纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 83-88.doi: 10.13475/j.fzxb.20220900301

• 纺织工程 • 上一篇    下一篇

阻燃腈纶/酚醛树脂纤维织物的制备及其性能

丁倩1, 吴俊霖1, 江慧1, 汪军1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2022-09-02 修回日期:2023-01-12 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 汪军(1973—),男,教授,博士。主要研究方向为新型纺纱技术及纺织品测试技术与性能评价。E-mail:junwang@dhu.edu.cn。
  • 作者简介:丁倩(1988—),女,实验师,博士生。主要研究方向为新型纺纱技术及织物开发与产品评价。
  • 基金资助:
    东华大学专创融合教改项目(101-03-0007331)

Preparation and properties of flame-retardant acrylic/phenolic resin fabrics

DING Qian1, WU Junlin1, JIANG Hui1, WANG Jun1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2022-09-02 Revised:2023-01-12 Published:2024-04-15 Online:2024-05-13

摘要:

为解决酚醛树脂纤维因强力低、纯纺难度大等限制其在服用领域发展的问题,以20∶80、40∶60、60∶40和80∶20的4种比例将酚醛树脂纤维与阻燃腈纶混纺,以平纹组织结构进行织物的开发与制备,并表征织物的阻燃性能及服用性能。结果表明:所开发的4种混纺比例织物的损毁长度均小于10 cm,无阴燃和熔融滴落现象;随着酚醛树脂纤维比例的增加,织物续燃时间逐渐减少,拉伸断裂强力逐渐下降,透气性能逐渐降低;且混纺比为40∶60、60∶40和80∶20的酚醛树脂纤维与阻燃腈纶混纺织物的热阻、导湿性和耐磨性并无显著性差异;酚醛树脂纤维与阻燃腈纶混纺比为40∶60和60∶40织物满足阻燃纺织品的需求,且服用性能好,制备的织物可为后续开发酚醛树脂服用产品提供参考和借鉴。

关键词: 酚醛树脂, 阻燃腈纶, 混纺织物, 服用性能, 阻燃纺织品

Abstract:

Objective Phenolic resin fiber has attracted extensive attention owing to its unique flame retardant properties. However, the difficulty in spinning limits the garment applications of phenolic resin fibers due to low fiber strength. In order to solve this problem, this paper proposes a novel method of blending phenolic resin fiber and flame-retardant acrylic fiber and exploring their feasibility in garment.

Methods During spinning process, the ratio of phenolic resin fiber and flame retardant acrylic fiber were set to 20∶80, 40∶60, 60∶40 and 80∶20, respectively. Then, the blended yarns were weaved into fabrics with plain weave structure, and their structure, flame retardant, mechanical properties, wear resistance, thermal and wet comfort properties of the fabric were characterized according to national standards.

Results With the increased of the phenolic resin fiber from 20% to 80%, the fabric exhibited yellow, from light to deep, because the natural color of the phenolic resin fiber is golden yellow, while that of acrylic fiber is white. Notably, the thickness and surface density were gradually increased, as the content of phenolic resin fiber in fabric increased. According to GB/T 5455—2014 "Textiles-Burning behaviour-Determination of damaged length, afterglow time and afterflame time of vertically oriented specimens", the damaged length of blended fabrics should be less than 10 cm, and no afterglow and melt dripping phenomenon should occur. Although, with the increase of phenolic resin fiber, the afterflame time and damaged length of the fabric gradually decreased, but it still meet the standard requirements of flame retardant fabrics.

With the increase of phenolic resin fiber content in the samples, the breaking strength and the work of fracture of the four fabrics were gradually decreased due to the low breaking strength of the phenolic resin fiber, but the breaking elongation remained unchanged. The thermal and wet comfort properties of the fabrics were also studied and the results were summarized. As the content of phenolic resin fiber increased from 20% to 40%, the thermal insulation effect of the fabrics gradually enhanced. However, there was no significant change in thermal insulation as the content of phenolic resin fiber further increased to 60% and 80%. With the increase of phenolic resin fiber proportion, the moisture absorption rate gradually enhanced, and the permeability of the samples demonstrated a decrease and then an increase. The fabrics with the content of the phenolic resin fiber at 40% and 60%, had the same moisture conductivity. The pilling grades of four fabrics were 1.5, 3, 3.5 and 4, suggesting increased wear resistance of the fabrics with the increasing content of phenolic resin fiber.

Conclusion Phenolic resin fiber based yarns via blending with flame retardant acrylic fiber were prepared, and 4 types of yarns with different content of phenolic resin fiber were woven with plain weave structure. Their mechanical properties, flame retardant and thermal and wet comfort properties were carefully investigated. The results suggested that all types of blending spinning yarn based fabrics meet the acquirement of flame retardant, mechanical and air permeability. Besides, the fabrics with the content of phenolic resin fiber at 40% and 60% could reach the needs of flame retardant textiles and have good wear performance. Our blending spinning strategy will provide reference for the development of phenolic resin based wearable products.

Key words: phenolic resin, flame-retardant acrylic, blended fabric, wearability, flame-retardant textile

中图分类号: 

  • TS102

表1

纤维原料参数表"

原料 长度/
mm
线密
度/
dtex
断裂强
度/(cN·
dtex-1)
断裂
伸长
率/%
回潮
率/
%
体积比
电阻/
(Ω·cm)
极限
氧指
数/%
酚醛树
脂纤维
38 3.7 1.94 3.3 3.6 1.0×109 34
阻燃
腈纶
38 4.1 4.61 22.1 3.9 1.0×109 33

表2

试样规格与结构参数"

试样
编号
密度/(根·(10 cm)-1) 厚度/
mm
面密度/
(g·m-2)
经密 纬密
1# 180 150 0.71 139.62
2# 260 150 0.75 145.94
3# 190 150 0.86 153.29
4# 180 150 0.94 161.30

图1

试样外观图"

表3

试样垂直燃烧测试结果"

试样
编号
损毁长
度/cm
续燃时
间/s
阴燃
时间/s
燃烧特征
1# 8.5 6.1 0 燃烧无收缩、熔融、熔滴现象,燃烧后织物炭化
2# 5.5 5.1 0
3# 5.0 4.3 0
4# 1.2 1.2 0

图2

试样垂直燃烧后效果图"

表4

试样经向拉伸性能测试结果"

试样编号 断裂强力/N 断裂伸长/mm 断裂功/J
1# 264.6 11.21 1.79
2# 195.3 12.20 1.46
3# 126.6 13.71 0.98
4# 80.1 12.40 0.72

表5

试样热湿舒适性指标"

试样
编号
热阻/
(m2·
K·W-1)
克罗
值/
(10-3 clo)
热导率/
(W·(m·
K)-1)
吸湿
速度
常数
透气率/
(mL·cm-2·
s-1)
液态水
芯吸高
度/cm
1# 0.053 8 0.346 8 0.013 0 0.005 8 1 063.64 9.0
2# 0.067 9 0.437 8 0.011 3 0.014 3 1 004.21 7.0
3# 0.069 3 0.521 6 0.010 3 0.027 1 734.64 6.5
4# 0.071 6 0.584 2 0.009 6 0.043 9 979.37 5.5
[1] 任蕊, 皇甫慧君, 王燕, 等. 酚醛纤维及其性能的研究[J]. 应用化工, 2013, 42(3):539-542.
REN Rui, HUANGFU Huijun, WANG Yan, et al. Modification performance of phenolic fibers[J]. Applied Chemical Industry, 2013, 42(3): 539-542.
[2] 张东卿, 郭全贵, 雷世文, 等. 一种提高酚醛树脂可纺性的改性方法: 201210396883.3[P].2013-03-13.
ZHANG Dongqing, GUO Quangui, LEI Shiwen, et al. A modified method to improve the spinnability of phenolic resins: 201210396883.3[P].2013-03-13.
[3] 王赫, 王洪杰, 阮芳涛, 等. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(1):22-29.
WANG He, WANG Hongjie, RUAN Fangtao, et al. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin[J]. Journal of Textile Research, 2021, 42(1):22-29.
[4] 马崇启, 蔡薇琦, 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12):29-32.
MA Chongqi, CAI Weiqi, KAN Yongjia. Gray clustering analysis on thermal-moisture comfort of phenolic fiber fabrics[J]. Journal of Textile Research, 2016, 37(12):29-32.
[5] 张晓宇, 贾旭宏, 代尚沛, 等. 低压环境下玻璃纤维/酚醛树脂燃烧特性[J]. 清华大学学报(自然科学版), 2023, 63(10):1520-1528.
ZHANG Xiaoyu, JIA Xuhong, DAI Shangpei, et al. Combustion properties of glass fiber/phenolic resin at low ambient pressure[J]. Journal Tsinghua Univer-sity (Science & Technology), 2023, 63(10):1520-1528.
[6] 王慧, 欧章明, 薛奎, 等. 酚醛纤维的制备、性能及其应用研究进展[J]. 天津造纸, 2020, 42(3):16-21.
WANG Hui, OU Zhangming, XUE Kui, et al. Progress in preparation, properties and application of phenolic fiber[J]. Tianjin Paper Making, 2020, 42(3):16-21.
[7] 王赫, 王洪杰, 阮芳涛, 等. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(1):22-29.
WANG He, WANG Hongjie, RUAN Fangtao, et al. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin[J]. Journal of Textile Research, 2021, 42(1):22-29.
[8] 杨金莲. 酚醛纤维纺纱工艺优化及其织物性能评价[D]. 天津: 天津工业大学, 2016: 23-38.
YANG Jinlian. Spinning process optimization and fabric property evaluation of phenolic fiber[D]. Tianjing: Tiangong University, 2016: 23-38.
[9] 蔡薇琦, 马崇启, 阚永葭, 等. 酚醛纤维头道并条工艺优化及其对成纱质量的影响[J]. 纺织学报, 2016, 37(10):26-31.
CAI Weiqi, MA Chongqi, KAN Yongjia, et al. Influence of process optimization of breaker drawing on yarn quality of phenolic fiber[J]. Journal of Textile Research, 2016, 37(10):26-31.
[10] ECONOMY J, EGGERTSVILLE, FRECHETTE F J, et al. Flame resistant cloth: US 3628995[P]. 1971-12-21.
[11] 邱秀丽. 酚醛纤维的结构性能与产品开发[D]. 青岛: 青岛大学, 2012: 31-53.
QIU Xiuli. Structure,properties and product development of phenolic fiber[D]. Qingdao: Qingdao University, 2012: 31-53.
[12] 王秀梅, 骆林惠, 赖卫清, 等. 聚四氟乙烯-芳纶/酚醛树脂斜纹织物衬垫不同磨损阶段弹性常数计算模型[J]. 复合材料学报, 2019,36: 337-346.
WANG Xiumei, LUO Linhui, LAI Weiqing, et al. Calculation model of elastic properties of polytetrafluoroethylene-aramid/phenolic resin twill fabric liner at different wear stage[J]. Acta Materiae Compositae Sinica, 2019,36: 337-346.
[13] 李承清, 江雷, 李雯. 阻燃隔热锦纶织物: 202222062944.4[P].2022-11-29.
LI Chengqing, JIANG Lei, LI Wen. Flame-retardant and heat-insulating nylon fabric: 202222062944.4[P]. 2022-11-29.
[14] 张海霞, 张喜昌. 阻燃腈纶纤维性能与可纺性研究[J]. 棉纺织技术, 2014, 42(6):44-46, 50.
ZHANG Haixia, ZHANG Xichang. Study on property and spinnability of flame-retardant acrylic fiber[J]. Cotton Textile Technology, 2014, 42(6):44-46, 50.
[15] 王阳, 程春祖, 姜丽娜, 等. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10):107-115.
doi: 10.13475/j.fzxb.20191001309
WANG Yang, CHENG Chunzu, JIANG Li'na, et al. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating[J]. Journal of Textile Research, 2020, 41(10):107-115.
doi: 10.13475/j.fzxb.20191001309
[16] 魏琳琳, 李熠, 崔荣荣. 功能性服用面料设计与阻燃性能研究[J]. 毛纺科技, 2019, 47(9):18-22.
WEI Linlin, LI Yi, CUI Rongrong. Design and flame retardancy of functional clothing fabrics[J]. Wool Textile Journal, 2019, 47(9):18-22.
[17] 滕越, 徐云, 李恭艳. 对织物起毛起球性能检测方法的思考[J]. 中国纤检, 2022(2):51-53.
TENG Yue, XU Yun, LI Gongyan. Thinking on testing method of pilling performance of fabric[J]. China Fiber Inspection, 2022(2):51-53.
[1] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[2] 张永芳, 郭红, 史晟, 阎智锋, 侯文生. 涤纶/棉混纺织物在水热体系中的降解[J]. 纺织学报, 2024, 45(04): 160-168.
[3] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[4] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[5] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[6] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[7] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[8] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[9] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[10] 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8.
[11] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[12] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[13] 周天博, 郑环达, 蔡涛, 于佐君, 王力成, 郑来久. 活性分散黄染料对涤纶/棉混纺织物的超临界CO2同浴染色[J]. 纺织学报, 2022, 43(03): 116-122.
[14] 史晟, 王彦, 李飞, 唐建东, 高翔宇, 侯文生, 郭红, 王淑花, 姬佳奇. 草酸稀溶液高效分离废旧聚酯/棉混纺织物[J]. 纺织学报, 2022, 43(02): 140-148.
[15] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!