纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 96-104.doi: 10.13475/j.fzxb.20230201001

• 纺织工程 • 上一篇    下一篇

基于多尺度Laws纹理能量和低秩分解的织物疵点检测算法

王振华1, 张周强1,2(), 昝杰1, 刘江浩1   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710600
    2.西安工程大学 陕西省功能性服装面料重点实验室, 陕西 西安 710600
  • 收稿日期:2023-02-06 修回日期:2023-09-04 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 张周强(1983—),男,副教授,博士。研究方向为光学检测和机器视觉等。E-mail:zhangzhouqiang208@126.com。
  • 作者简介:王振华(1999—),男,硕士生。主要研究方向为机器视觉和织物疵点检测。
  • 基金资助:
    国家自然科学基金青年基金项目(61701384);陕西省教育厅重点科学研究计划项目(20JS051);西安工程大学柯桥纺织产业创新研究院项目(19RQYB03);陕西省自然科学基础研究计划(2023-JC-YB-288);湖北省数字化纺织装备重点实验室开放课题项目(KDTL2020005)

Fabric defects detection algorithm based on multi-scale Laws texture energy and low-rank decomposition

WANG Zhenhua1, ZHANG Zhouqiang1,2(), ZAN Jie1, LIU Jianghao1   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
    2. Shaanxi Key Laboratory of Functional Garment Fabrics, Xi'an Polytechnic University, Xi'an, Shaanxi 710600, China
  • Received:2023-02-06 Revised:2023-09-04 Published:2024-04-15 Online:2024-05-13

摘要:

为提高织物疵点检测算法对简单纹理织物、模式纹理织物及条纹纹理织物检测时的普适性和准确性,提出了一种基于多尺度Laws纹理能量和低秩分解的织物疵点检测算法。首先,对织物图像进行直方图均衡化并将处理后的图像均匀划分为子图像块;其次,对每个子图像块提取28个纹理能量特征(利用7个Laws滤波模板在 4个尺度上提取),计算所有子图像块提取到的特征均值并组成特征矩阵;然后,利用特征矩阵构建低秩分解模型,通过方向交替方法(ADM)优化求解,得到低秩部分和稀疏部分;最后,由稀疏部分生成疵点显著图,采用迭代阈值分割法对其进行分割,得到织物疵点检测结果。为验证该算法的有效性,在织物图像数据集选取了包含错纬、断经、跳花、破洞等常见疵点的织物图像,并将实验结果与已有3种算法进行了对比。实验结果表明,该算法在简单纹理织物、模式纹理织物及条纹纹理织物检测上具有更好的普适性和准确性,且检测效率具有一定优势。

关键词: 织物疵点, 疵点检测, Laws纹理, 纹理能量, 特征提取, 矩阵低秩分解

Abstract:

Objective In order to improve the universality and accuracy of fabric defects detection algorithm for simple textured fabric, pattern textured fabric and stripe textured fabric. A fabric defects detection algorithm based on multiscale Laws of texture energy and low-rank decomposition was proposed.

Method Firstly, the fabric image is equalized by histogram, and the image is evenly divided into sub-image blocks. Secondly, 28 texture energy features were extracted from each sub-image block (7 Laws filter templates were used to extract the features on 4 scales), and the mean values of all sub-image blocks were calculated, and the feature matrix was formed. Then, the low-rank decomposition model is constructed by the feature matrix, and the low-rank and spare parts are obtained by the direction alternation method (ADM). Finally, the defect saliency maps are generated from the sparse part, which is segmented by iterative threshold segmentation method, and the fabric defect detection results are obtained.

Results To validate the effectiveness of the proposed algorithm, the ZJU-Leaper colored fabric dataset is used for experiments. Three images, including simple textured fabric, patterned textured fabric, and striped textured fabric, were selected for the experiment, including common defects such as wrong weft, broken warp, flaking and holes. The image size is 512 pixels × 512 pixels. First, the key elements of the algorithm are analyzed. In the feature extraction section, the saliency maps generated with different numbers of Laws filter templates are compared. In the low-rank decomposition part, the saliency maps generated by choosing different balance factors are compared. The experimental results show that 28 Laws filter templates have the best detection effect, and the fabric defect saliency maps is the best when λ values of simple texture, pattern texture and stripe texture fabric are 0.02, 0.12 and 0.05, respectively. Secondly, the defect saliency maps generated by the proposed algorithm in this paper is compared with Gabor combined with low-rank decomposition algorithm (the following content is expressed in Gabor+LR), HOG combined with low-rank decomposition algorithm (the following content is expressed in HOG+LR), and Gabor combined with HOG combined with low-rank decomposition algorithm to generate saliency maps (the following content is expressed in GHOG+LR). Experimental results show that: in the detection of simple texture fabrics, impurities exist in the detection results of Gabor+LR algorithm and HOG+LR algorithm, and the results of GHOG+LR algorithm and the results of the algorithm in this paper are satisfactory. In the detection of pattern-texturing fabrics, the results of the proposed algorithm in this paper are ideal. However, error detection occurs in the detection results of Gabor+ LR algorithm and HOG+LR algorithm, and a small number of impurities also occur in the detection results of GHOG+LR algorithm. In the detection of striped texture fabrics, the results of the proposed algorithm in this paper also are relatively ideal. A small number of impurities appears in the detection results of the GHOG+LR algorithm, while the Gabor+LR algorithm will have error detection when the fabric image does not have obvious defects, and a large number of impurities still appear in the detection of the HOG+LR algorithm. Finally, the timeliness analysis of the algorithm is carried out, and the results show that the detection speed of the proposed algorithm has certain advantages.

Conclusion In this paper, we propose a fabric defect detection algorithm based on multiscale Laws texture energy and low-rank decomposition. In the feature extraction part, 28 Laws texture energy features are extracted based on four image scales to generate the feature matrix. In the low-rank decomposition part, the low-rank decomposition model is established, and the direction alternation method (ADM) is used to optimize it to get the low-rank and sparse parts of the feature matrix. Experimental results show that the proposed algorithm performs better than other algorithms in detecting simple textured fabrics, patterned textured fabrics, and striped textured fabrics, with some advantages in detection speed. Therefore, the proposed algorithm has better generality, accuracy and detection efficiency.

Key words: fabric defect, defect detection, Laws texture, texture energy, feature extraction, matrix low-rank decomposition

中图分类号: 

  • TS101

图1

算法检测过程"

图2

特征矩阵生成过程"

图3

ADM求解流程图"

图4

织物类型"

图5

不同数量滤波模板的疵点显著图对比 各分图中:第1行为简单纹理织物;第2行为模式纹理织物;第3行为条纹纹理织物。"

图6

不同平衡因子λ的疵点显著图对比 各分图中:第1行为简单纹理织物;第2行为模式纹理织物;第3行为条纹纹理织物。"

图7

简单纹理织物在不同方法下的疵点显著图对比 各分图中:第1行为跳花; 第2行为划痕; 第3行为污渍; 第4行为断经; 第5行为断纬。"

图8

模式纹理织物在不同方法下的疵点显著图对比 各分图中:第1行为跳花; 第2行为划痕; 第3行为污渍; 第4行为断经; 第5行为断纬。"

图9

条纹纹理织物在不同方法下的疵点显著图对比 注:第1行为粗经; 第2行为污渍; 第3行为断经; 第4行为跳花; 第5行为划痕。"

表1

算法平均检测时间对比"

算法 平均检测时间/s
Gabor+LR 0.824
HOG+LR 0.433
GHOG+LR 0.524
本文算法 0.321

图10

检测速度对比"

[1] LI C, LI J, LI Y, et al. Fabric defect detection in textile manufacturing: a survey of the state of the art[J]. Security and Communication Networks, 2021, 2021: 1-13.
[2] 吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
doi: 10.13475/j.fzxb.20200702710
LÜ Wentao, LIN Qiqi, ZHONG Jiaying, et al. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11): 197-206.
doi: 10.13475/j.fzxb.20200702710
[3] SHI B, LIANG J, DI L, et al. Fabric defect detection via low-rank decomposition with gradient information and structured graph algorithm[J]. Information Sciences, 2021, 546: 608-626.
[4] LI C, GAO G, LIU Z, et al. Defect detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019, 7: 83962-83973.
[5] 景军锋, 李江南, 李鹏飞. 改进型奇异值分解在织物疵点检测上的应用[J]. 纺织学报, 2014, 35(6): 62-67.
JING Junfeng, LI Jiangnan, LI Pengfei. Research on detection of defects in fabrics using improved singular value decomposition[J]. Journal of Textile Research, 2014, 35(6):62-67.
[6] YUAN X, YANG J. Sparse and low-rank matrix decomposition via alternating direction methods[J]. Pacific Journal of Optimization, 2009, 12(2):1-16.
[7] PEREZ A, GONZALEZ R C. An iterative thresholding algorithm for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987 (6): 742-751.
pmid: 21869436
[8] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355-368.
[9] OJALA T, PIETIKäINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.
[10] GANASALA P, PRASAD A D. Medical image fusion based on laws of texture energy measures in stationary wavelet transform domain[J]. International Journal of Imaging Systems and Technology, 2020, 30(3): 544-557.
[11] ZHANG C, FENG S, WANG X, et al. ZJU-Leaper: a benchmark dataset for fabric defect detection and a comparative study[J]. IEEE Transactions on Artificial Intelligence, 2020, 1(3):219-232.
[12] 李春雷, 王珺璞, 刘洲峰, 等. 基于对偶范数低秩分解的织物疵点检测方法[J]. 棉纺织技术, 2019, 47(1):5-10.
LI Chunlei, WANG Junpu, LIU Zhoufeng, et al. Fabric defect detection method based on dual norm low-rank decomposition[J]. Cotton Textile Technology, 2019, 47(1):5-10.
[13] 李春雷, 高广帅, 刘洲峰, 等. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(3): 149-154.
LI Chunlei, GAO Guangshuai, LIU Zhoufeng, et al. Fabric defect detection algorithm based on histogram of oriented gradient and low-rank decomposition[J]. Journal of Textile Research, 2017, 38(3): 149-154.
[1] 任杰, 张洁, 汪俊亮. 纺织典型装备故障多特征自适应提取方法[J]. 纺织学报, 2024, 45(04): 211-220.
[2] 王小虎, 潘如如, 高卫东, 周建. 基于稀疏字典优选的织物疵点检测方法[J]. 纺织学报, 2023, 44(08): 81-87.
[3] 付晗, 胡峰, 龚杰, 余联庆. 面向织物疵点检测的缺陷重构方法[J]. 纺织学报, 2023, 44(07): 103-109.
[4] 闫本超, 潘如如, 周建, 王蕾, 王小虎. 基于改进Itti显著模型的织物疵点实时检测[J]. 纺织学报, 2023, 44(07): 95-102.
[5] 刘军平, 张伏红, 胡新荣, 彭涛, 李丽, 朱强, 张俊杰. 基于多模态融合的个性化服装搭配推荐[J]. 纺织学报, 2023, 44(03): 176-186.
[6] 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150.
[7] 马传旭, 张宁, 潘如如. 基于支持向量机的筒子纱纱管品种检测[J]. 纺织学报, 2023, 44(01): 194-200.
[8] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[9] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[10] 刘国维, 潘如如, 高卫东, 周建. 基于总变差的织物疵点分割方法[J]. 纺织学报, 2021, 42(11): 64-70.
[11] 徐增波, 张玲, 张艳红, 陈桂清. 基于复杂网络提取和支持向量机模型分类的服装领型研究[J]. 纺织学报, 2021, 42(06): 146-152.
[12] 郑晓萍, 刘成霞. 基于激光测量的机织服装起拱性客观评价[J]. 纺织学报, 2021, 42(05): 143-149.
[13] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[14] 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66.
[15] 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!