纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 1-9.doi: 10.13475/j.fzxb.20221108601

• 纤维材料 •    下一篇

饲料与桑叶饲喂的家蚕蚕丝品质分析

黄晴1,2, 苏振岳1,2, 周一帆1,2, 刘青松1,2, 李懿1,2, 赵萍1,2, 王鑫1,2()   

  1. 1.西南大学 西部(重庆)科学城种质创制大科学中心, 重庆 400716
    2.西南大学 前沿交叉学科研究院生物学研究中心, 重庆 400716
  • 收稿日期:2023-01-16 修回日期:2023-09-13 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 王鑫(1988—),男,副教授,博士。主要研究方向为蚕丝力学性能。E-mail:swuwangxin@swu.edu.cn。
  • 作者简介:黄晴(2000—),女,硕士生。主要研究方向为蚕丝力学性能提升。
  • 基金资助:
    国家自然科学基金项目(32270509);中央高校基本科研业务费专项资金资助项目(SWU-KT22043)

Analysis of silks from silkworms reared with artificial diet and mulberry leaves

HUANG Qing1,2, SU Zhenyue1,2, ZHOU Yifan1,2, LIU Qingsong1,2, LI Yi1,2, ZHAO Ping1,2, WANG Xin1,2()   

  1. 1. Integratice Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 400716, China
    2. Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400716, China
  • Received:2023-01-16 Revised:2023-09-13 Published:2024-05-15 Online:2024-05-31

摘要:

为明确人工饲料饲喂和桑叶饲喂对家蚕蚕丝品质的影响,借助扫描电子显微镜、氨基酸分析仪、电感耦合等离子体发射光谱仪、傅里叶变换红外光谱仪、二维广角X射线衍射仪等,系统性地对2种饲喂方式获得的蚕丝的形态、组成、结构与性能进行分析。结果表明:与桑叶饲喂所获得的蚕丝相比,人工饲料饲喂所获得的蚕丝在外观、蛋白质组分方面无显著差异,而在元素含量、脯氨酸含量、二级结构、结晶度等方面存在差异;大量元素中,除Na和Si外,其余元素在人工饲料饲喂蚕丝中的含量均显著低于桑叶饲喂蚕丝,微量元素Al、Cr、B在人工饲料饲喂蚕丝中含量低于桑叶饲喂蚕丝,而Fe、Mn、Zn、Cu元素的含量反之;脯氨酸在人工饲料饲喂蚕丝中的含量显著高于桑叶饲喂蚕丝;饲料饲喂蚕丝中β转角结构含量大于桑叶饲喂蚕丝,而无规则卷曲结构含量相反,其结晶度也较桑叶饲喂蚕丝的降低5.1%;人工饲料饲喂蚕丝具有更高的平均断裂应变,而桑叶饲喂蚕丝具有更高的断裂强度,但二者差异并不显著;虽然桑叶饲喂蚕丝与人工饲料饲喂蚕丝在部分元素、氨基酸和二级结构上存在一定差异,但反映到蚕丝力学性能上其差异并不显著,说明家蚕蚕丝品质受饲喂方式的影响不显著,人工饲料饲喂具有替代桑叶饲喂家蚕的可能性。

关键词: 蚕丝, 人工饲料, 桑叶, 饲喂方式, 蚕丝结构, 力学性能

Abstract:

Objective In order to understand the quality differences between silk fibers produced by artificial diet feeding and mulberry leave feeding, and to investigate the possibility of substituting artificial diet for mulberry leaves in sericulture, this research systematically analyzed the differences in morphology, composition, chemical structure, and mechanical properties between artificial diet-fed silkworm silk and mulberry leaves-fed silkworm silk.

Method In this study, two groups of silkworms were fed separately with artificial diet and mulberry leaves.The silk cocoons and fibers were carefully examined for their morphological characteristics using scanning electron microscopy. In order to evaluate the composition of the silk, elemental analysis, amino acid content analysis, and sodium dodecyl sulfate polyacrylamide gel electrophoresis testing were conducted to compare the two feeding methods.Additionally, infrared absorption spectroscopy, two-dimensional wide-angle X-ray scattering (2D-WAXS), and silk tensile testing were employed to elucidate the differences in chemical structure and mechanical properties between artificial diet-fed and mulberry leaves-fed silkworm silk.

Results The silk with artificial diet feeding exhibited no significant differences in fiber appearance compared to the silk with mulberry leave feeding. Protein composition analysis showed that there was no difference in the type and content of silk fibroin heavy chain protein, silk fibroin light chain protein and sericin protein between the two groups of silk samples. However, notable differences were observed in terms of element content, proline content, secondary structure, and crystallinity. The element analysis revealed that, except for Na and Si, the artificial diet silk had significantly lower content of other elements compared to the mulberry leaves silk. Furthermore, artificial diet silk exhibited lower levels of trace elements such as Al, Cr, and B, while higher levels of Fe, Mn, Zn, and Cu were detected compared to the mulberry leaves silk. Analysis of amino acid content indicated a distinct variation of proline content between the two silk types, with significantly higher proline content in the artificial diet silk. The analysis of secondary structure and crystallinity demonstrated higher β-turn content and lower random coil content in the artificial diet silk compared to the mulberry leaves silk. 2D-WAXS analysis revealed lower crystallinity (60.1%) in the artificial diet silk compared to the mulberry leaves silk (65.2%). Tensile testing showed that the artificial diet silk exhibited a higher average breaking strain (19.8±8.2)%, while the mulberry leaves silk demonstrated higher breaking strength (361.6±97.2)MPa, although the difference was not statistically significant.

Conclusion The study findings indicated that the observed disparities in morphology, composition, chemical structure, and mechanical properties between artificial diet-fed and mulberry leaves-fed silk were not significant, suggesting the potential of artificial diet as a substitute for mulberry leaves feeding to obtain high-quality silk fibers. The two feeding methods have no significant impact on the quality of silk produced. In addition, artificial diet offered advantages such as the potential for adding beneficial substances and avoiding harmful substances, further highlighting its suitability as a replacement for mulberry leaves in silkworm feeding. Future research may focus on incorporating beneficial substances such as metal ions or proline into artificial diets, by optimizing the formula of artificial diets and adding appropriate amounts of beneficial elements for compensation, in order to selectively improve the mechanical properties of silk and enhance the wider value of artificial diet feeding silk in sericulture. Overall, this comprehensive analysis contributes valuable insights and directions for improving artificial diet in sericulture and enhancing the quality of silk and lays a solid foundation for further promoting the strategic goal of industrialized sericulture of whole age feeding in the future.

Key words: silk, artificial diet, mulberry leef, silk structure, mechanical property

中图分类号: 

  • TS14

图1

人工饲料饲喂和桑叶饲喂获得蚕茧和蚕丝的形貌"

图2

人工饲料饲喂和桑叶饲喂获得蚕茧的成分分析 注:“*”表示在0.05水平显著;“**”表示在0.01水平显著;“***”表示在0.001水平显著。"

图3

人工饲料饲喂和桑叶饲喂获得蚕茧的SDS-PAGE测试结果 注:a为蛋白分子质量标准;b为人工饲料饲喂蚕茧;c为桑叶饲喂蚕茧。"

图4

人工饲料饲喂和桑叶饲喂获得蚕丝纤维的二级结构含量"

图5

人工饲料饲喂和桑叶饲喂获得的蚕丝纤维的二维广角X射线衍射谱图和分峰图"

图6

人工饲料饲喂和桑叶饲喂获得蚕丝纤维的平均应力-应变曲线"

表1

蚕丝力学性能参数"

饲喂方式 断裂强度/
MPa
断裂
伸长率/%
弹性模量/
GPa
韧度/
(MJ·m-3)
人工饲料饲喂 320.5±65.2 19.8±8.2 5.8±2.0 46.9±24.7
桑叶饲喂 361.6±97.2 17.1±7.0 6.9±2.0 47.5±27.6
[1] GE D, YU H Y, MIAO Z Y, et al. Intrinsically conductive bifunctional nanocellulose-reinforced robust and self-healable electronic skin: deep insights into multiple bonding network, property reinforcement, and sensing mechanism[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(3): 1157-1167.
[2] OUYANG Z F, LI S H, LIU J T, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107963.
[3] HUANG W W, LING S J, LI C M, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chemical Society Reviews, 2018, 47(17): 6486-6504.
doi: 10.1039/c8cs00187a pmid: 29938722
[4] ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3): 401-416.
doi: 10.1016/s0142-9612(02)00353-8 pmid: 12423595
[5] 李建琴, 顾国达, 崔为正. 人工饲料养蚕的进程与展望[J]. 中国蚕业, 2021, 42(1): 46-52.
LI Jianqin, GU Guoda, CUI Weizheng. Progress and prospect of silkworm rearing with artificial diet[J]. China Sericulture, 2021, 42(1): 46-52.
[6] 何金涛, 占鹏飞, 郝志华, 等. 家蚕人工饲料研究进展[J]. 蚕桑通报, 2020, 51(1): 16-19.
HE Jintao, ZHAN Pengfei, HAO Zhihua, et al. Research progress of artificial silkworm feed[J]. Bulletin of Sericulture, 2020, 51(1): 16-19.
[7] 曹学军. 《蚕桑丝绸产业高质量发展行动计划(2021-2025年)》解读节选[J]. 江苏丝绸, 2020(6): 2,53.
CAO Xuejun. Selected interpretation of the action plan for high quality development of the sericulture and silk industry (2021-2025)[J]. Jiangsu Silk, 2020(6): 2,53.
[8] LI J, CHEN C, ZHA X. Midgut and head transcriptomic analysis of silkworms reveals the physiological effects of artificial diets[J]. Insects, 2022. DOI: 10.3390/insects13030291.
[9] ZHOU Z H, YANG H J, CHEN M, et al. Comparative proteomic analysis between the domesticated silk-worm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet[J]. Journal of Proteome Research, 2008, 7(12): 5103-5111.
[10] LAMBERTI C, GAI F, CIRRINCIONE S, et al. Investigation of the protein profile of silkworm (Bombyx mori) pupae reared on a well-calibrated artificial diet compared to mulberry leaf diet[J]. PeerJ, 2019. DOI: 10.7717/peerj.6723.
[11] DONG H L, ZHANG S X, TAO H, et al. Metabolomics differences between silkworms (bombyx mori) reared on fresh mulberry (morus) leaves or artificial diets[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-11592-4.
[12] TAO S, WANG J, LIU M, et al. Haemolymph metabolomic differences in silkworms (bombyx mori L.) under mulberry leaf and two artificial diet rearing methods[J]. Archives of Insect Biochemistry and Physiology, 2022. DOI: 10.1002/arch.21851.
[13] QIN D, WANG G, DONG Z, et al. Comparative fecal metabolomes of silkworms being fed mulberry leaf and artificial diet[J]. Insects, 2020. DOI: 10.3390/insects11120851.
[14] DONG H L, ZHANG S X, CHEN Z H, et al. Differences in gut microbiota between silkworms (bombyx mori) reared on fresh mulberry (morus alba var multicaulis) leaves or an artificial diet[J]. RSC Advances, 2018, 8(46): 26188-26200.
[15] 朱良均. 家蚕人工饲料育的蚕丝特性[J]. 国外农学:蚕业, 1992(2): 1-7.
ZHU Liangjun. Characteristics of silkworm reared with artificial diet[J]. Foreign Agronomy:Sericulture, 1992(2): 1-7.
[16] 胡暄妍, 马明波, 周文龙. 人工饲料育蚕蚕丝的结构和拉伸力学性能[J]. 丝绸, 2020, 57(9): 12-16.
HU Xuanyan, MA Mingbo, ZHOU Wenlong. Structure and tensile mechanical properties of silk from silkworm raised with artificial feed[J]. Journal of Silk, 2020, 57(9): 12-16.
[17] 张桂征, 闭立辉, 韦博尤, 等. 人工饲料与桑叶不同搭配饲育模式对家蚕新品种桂蚕5号生长发育及茧丝质量的影响[J]. 中国蚕业, 2021, 42(4): 10-14.
ZHANG Guizheng, BI Lihui, WEI Boyou, et al. Effects of different feeding patterns of artificial diet and mulberry leaves on the growth and silk quality of Guichan No.5:a new silkworm variety[J]. China Sericulture, 2021, 42(4): 10-14.
[18] QU J, FENG P, ZHU Q, et al. Study on the effect of stretching on the strength of natural silk based on different feeding methods[J]. ACS Biomaterials Science & Engineering, 2022, 8(1): 100-108.
[19] 周文, 陈新, 邵正中. 红外和拉曼光谱用于对丝蛋白构象的研究[J]. 化学进展, 2006, 18(11): 1514-1522.
ZHOU Wen, CHEN Xin, SHAO Zhengzhong. Conformation studies of silk proteins with infrared and raman spectroscopy[J]. Progress in Chemistry, 2006, 18(11): 1514-1522.
[20] LÜ Z, QI P, CAO L, et al. Structural characterization of silk fibers by wide-angle X-ray scattering[J]. Methods in Molecular Biology, 2021, 2347: 241-248.
doi: 10.1007/978-1-0716-1574-4_21 pmid: 34472070
[21] LU H, XIA K, JIAN M, et al. Mechanically reinforced silkworm silk fiber by hot stretching[J]. Research, 2022. DOI: 10.34133/2022/9854063.
[22] LIU Q, WANG X, TAN X, et al. Disruption of the metal ion environment by EDTA for silk formation affects the mechanical properties of silkworm silk[J]. Internation Journal of Molecular Sciences, 2019. DOI: 10.3390/ijms20123026.
[23] ZHOU L, CHEN X, SHAO Z, et al. Effect of metallic ions on silk formation in the mulberry silkworm, bombyx mori[J]. Journal of Physical Chemistry B, 2005, 109(35): 16937-16945.
[24] WANG X, LI Y, LIU Q, et al. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks[J]. Biochimica et Biophysica Acta-General Subjects, 2017, 1861(3): 567-576.
doi: S0304-4165(16)30445-7 pmid: 27865996
[25] WANG X, LI Y, XIE K, et al. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties[J]. Journal of Insect Physiology, 2015, 73: 53-59.
[26] SHOUKAT M A, ASHRAF S, ALI M, et al. The effect of Cr (Vi) on silkworm (bombyx mori) fed on in vitro accumulated mulberry leaves[J]. Asian Journal of Agriculture and Biology, 2014, 2: 119-128.
[27] ASHFAQ M, AHMAD S, SAGHEER M, et al. Bioaccumulation of chromium (III) in silk-worm (Bombyx mori L.) in relation to mulberry, soil and wastewater metal concentrations[J]. Journal of Animal and Plant Sciences, 2012, 22(3): 627-634.
[28] SEYDEL T, KÖLLN K, KRASNOV I, et al. Silkworm silk under tensile strain investigated by synchrotron X-ray diffraction and neutron spectroscopy[J]. Macromolecules, 2007, 40(4): 1035-1042.
[29] KRASNOV I, DIDDENS I, HAUPTMANN N, et al. Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales[J]. Physical Review Letters, 2008. DOI: 10.1103/PhysRevLett.100.048104.
[30] MHUKA V, DUBE S, NINDI MM. Chemical, structural and thermal properties of gonometa postica silk fibroin, a potential biomaterial[J]. International Journal of Biological Macromolecules, 2013, 52: 305-311.
doi: 10.1016/j.ijbiomac.2012.09.010 pmid: 23000253
[31] 邵正中. 蚕丝、蜘蛛丝及其丝蛋白[M]. 北京: 化学工业出版社, 2015: 108-109.
SHAO Zhengzhong. Silk, spider silk and its fibroin[M]. Beijing: Chemical Industry Press, 2015: 108-109.
[1] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[2] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[3] 陈美玉, 李立凤, 董侠. 长碳链聚酰胺1012纤维在不同温度下的力学性能[J]. 纺织学报, 2023, 44(11): 9-18.
[4] 谭婷, 李哲阳, 马明波, 周文龙. 天然绿色蚕丝抗氧化组分向皮肤迁移的特性研究[J]. 纺织学报, 2023, 44(10): 75-80.
[5] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[6] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[7] 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51.
[8] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[9] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[10] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[11] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[12] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[13] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[14] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[15] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!