纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 10-18.doi: 10.13475/j.fzxb.20221108101
MA Kai1, DENG Lulu2, WANG Xuelin1, SHI Guomin1, ZOU Guanglong1()
摘要:
为实现棉浆纤维素的绿色、高效溶解,促进其高值化利用,以质子型离子液体([DBNH][Lev])为溶剂,制备了5种不同质量分数的纤维素/[DBNH][Lev]溶液;借助核磁共振技术研究了纤维素在离子液体中的溶解机制,测定了纤维素溶液在不同条件下的稳态和动态流变行为,讨论了纤维素含量、温度和剪切速率等对均相聚合物溶液黏度的影响规律。结果表明:纤维素/[DBNH][Lev]溶液为典型的假塑性流体,对温度具有敏感性,且黏度随温度升高而降低;此外,该溶液在高频率下出现凝胶点,存在黏性流动为主的类液态向弹性形变为主的类固态转变,且温度越高转变点越向低频区移动,这为纤维素在离子液体中的流变响应提供理论基础,并对后续的纤维素加工工艺(如涂层、纺丝)提供技术指导。
中图分类号:
[1] | CHENG Q Z, WANG S Q, RIALS T G, et al. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(2): 218-224. |
[2] | VROMAN I, TIGHZERT L. Biodegradable polymers[J]. Materials, 2009, 2(2): 307-344. |
[3] | ANDANSON J M, BORDES E, DEVEMY J, et al. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids[J]. Green Chemistry, 2014, 16(5): 2528-2538. |
[4] | LI D, HUANG X Y, HUANG Y A, et al. Additive printed all-cellulose membranes with hierarchical structure for highly efficient separation of oil/water nanoemulsions[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44375-44382. |
[5] | WANG G, HE Y, WANG H, et al. A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation[J]. Green Chemistry, 2015, 17(5): 3093-3099. |
[6] | THAKUR V K, VOICU S I. Recent advances in cellulose and chitosan based membranes for water purification: a concise review[J]. Carbohydrate Polymers. 2016, 146(1): 148-165. |
[7] | KO Y, KWON M, BAE W K, et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers[J]. Nature Communications, 2017, 8(14): 1-11. |
[8] |
RUHS P A, MALOLLARI K G, BINELLI M R, et al. Conformal bacterial cellulose coatings as lubricious surfaces[J]. ACS Nano, 2020, 14 (4): 3885-3895.
doi: 10.1021/acsnano.9b09956 pmid: 32150387 |
[9] | HULT E L, IOTTI M, LENES M. Efficient approach to high barrier packaging using microfibrillar cellulose and shellac[J]. Cellulose, 2010, 17 (3):575-586. |
[10] | TAKAYASHI M, DAISUKE T, NOBUTAKE T, et al. Solution properties of celluloses from different biological origins in LiCl-DMAc[J]. Cellulose, 2001, 8(4): 275-282. |
[11] | FINK H P, WEIGEL P, PURZ H J, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9): 1473-1524. |
[12] |
NAUSHAD M, ALOTHMAN Z A, KHAN A B, et al. Effect of ionic liquid on activity, stability, and structure of enzymes: a review[J]. International Journal of Biological Macromolecules, 2012, 51(4): 555-560.
doi: 10.1016/j.ijbiomac.2012.06.020 pmid: 22732130 |
[13] |
VASCONCELOS A, FREDDI G, CAVACO-PAULO A. Biodegradable materials based on silk fibroin and keratin[J]. Biomacromolecules, 2008, 9(4): 1299-1305.
doi: 10.1021/bm7012789 pmid: 18355027 |
[14] | SUN N, RAHMAN M, QIN Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate[J]. Green Chemistry, 2009, 11(5): 646-655. |
[15] | SWATLOSKI R P, SPEAR S K, ROGERS R D, et al. Dissolution of cellose with lonic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
[16] | DISSANAYAKE N, THALANGAMAARACHCHIGE V D, THAKURATHI M, et al. Dissolution of cotton cellulose in 1:1 mixtures of 1-butyl-3-methylimidazolium methylphosphonate and 1-alkylimidazole co-solvents[J]. Carbohydrate Polymer, 2019, 221(1): 63-72. |
[17] | BRANDT-TALBOT A, GSCHWEND F J V, FENNELL P S, et al. An economically viable ionic liquid for the fractionation of lignocellulosic biomass[J]. Green Chemistry, 2017, 19(13): 3078-3102. |
[18] | GSCHWEND F J V, MALARET F, SHINDE S, et al. Rapid pretreatment of miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures[J]. Green Chemistry, 2018, 20(15): 3486-3498. |
[19] | MACFARLANE D R, SEDDON K R. Lonic liquids-progress on the fundamental issues[J]. Australian Journal of Chemistry, 2007, 60(1): 3-5. |
[20] | GREAVES T L, WEERAWARDENA A, KRODKIEWSKA I, et al. Protic ionic liquids: physicochemical properties and behavior as amphiphile self-assembly solvents[J]. The Journal of Physical Chemistry B, 2008, 112(3): 896-905. |
[21] | KING A W T, ASIKKALA J, MUTIKAINEN I, et al. Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing[J]. Angewandte Chemie-International Edition, 2011, 50(28): 6301-6305. |
[22] | ACHINIVU E C, HOWARD R M, Li G Q, et al. Lignin extraction from biomass with protic ionic liquids[J]. Green Chemistry, 2014, 16(3): 1114-1119. |
[23] | BYRNE N, ANGELL C A. Formation and dissolution of hen egg white lysozyme amyloid fibrils in protic ionic liquids[J]. Chemical Communications, 2009, 9(9): 1046-1048. |
[24] | LEE S Y, OGAWA A, WATANABE M, et al. Nonhumidified intermediate temperature fuel cells using protic ionic liquids[J]. Journal of the American Chemical Society, 2010, 132(28): 9764-9773. |
[25] | DENG L L, YUE W, XIE H B, et al. Biobased protic ionic liquids as sustainable solvents for wool keratin/cellulose simultaneous dissolution: solution properties and composited membrane preparation[J]. ACS Sustainable Chemistry & Engineering 2022, 10(6): 2158-2168. |
[26] | BECHERINI S, MEZZETTA A, GUAZZELLI L, et al. Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose[J]. New Journal of Chemistry, 2019, 43(11):4554-4561. |
[27] | SESCOUSSE R, LE K A, BUDTOVA T, et al. Viscosity of cellulose-imidazolium-based ionic liquid solu-tions[J]. The Journal of Physical Chemistry B, 2010, 114 (21): 7222-7228. |
[28] | 于勤, 张丽, 曹建华, 等. 二醋酸纤维素纤维纺丝溶液流变性能[J]. 纺织学报, 2013, 34(6):8-12. |
YU Qin, ZHANG Li, CAO Jianhua, et al. Rheological property of cellulose diacetate spinning dope[J]. Journal of Textile Research, 2013, 34(6): 8-12. | |
[29] | 闫红芹. 纤维素/离子液体溶液流变行为的研究[J]. 纺织学报, 2009, 30(12):9-12. |
YAN Hongqin. Study on rheological property of cellulose/ionic liquids[J]. Journal of Textile Research, 2009, 30(12): 9-12. | |
[30] | 宋俊, 谭晓瑞, 程博闻, 等. [AMIM]Cl为溶剂的纤维素溶液的流变性能[J]. 纺织学报, 2010, 31(11):11-15. |
SONG Jun, TAN Xiaorui, CHENG Bowen, et al. Rheological behavior of cellulose solution with [AMIM]Cl as solvent[J]. Journal of Textile Research, 2010, 31(11): 11-15. | |
[31] | WANG M, ZHAO T, WANG G H, et al. Blend films of human hair and cellulose prepared from an ionic liquid[J]. Textile Research Journal, 2014, 84 (12): 1315-1324. |
[32] | 李根, 刘跃军, 谭海英, 等. 微晶纤维素/聚丁二酸丁二醇酯复合材料的流变行为[J]. 复合材料学报, 2017, 34 (1):210-216. |
LI Gen, LIU Yuejun, TAN Haiying, et al. Rheological behavior of microcrystalline cellulose/poly (butylene succinate) composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 210-216. | |
[33] | ZHANG J P, GOTOH Y, POTTHAST A, et al. High performance cellulose fibers regenerated from 1-butyl-3-methylimidazolium chloride solution: effects of viscosity and molecular weight[J]. Journal of Applied Polymer Science, 2019, 137(19): 48684-48688. |
[34] | LU F, WANG L J, ZHANG C, et al. Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sul-foxide[J]. Cellulose, 2015, 22(5): 3077-3087. |
[35] | SONG J, CAO H, LIU F, et al. Effect of lithium chloride on cellulose/1-allyl-3-methylimidazolium chloride solutions[J]. Rheological Acta, 2016, 55(5): 423-430. |
[36] | CHAE D W, KIM B C, LEE W S. Rheological characterization of cellulose solutions in N-methyl morpholine N-oxide monohydrate[J]. Journal of Applied Polymer Science, 2002, 86(1): 216-222. |
[1] | 颜素崟, 周丽春, 郑庭, 金福江. 蒽醌型染料分子羟基最优取代位置的多目标优化设计方法[J]. 纺织学报, 2024, 45(01): 128-135. |
[2] | 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30. |
[3] | 王小康, 解开放, 周衡书, 包新军, 徐应盛. 醋化级芦苇溶解浆的制备及其性能[J]. 纺织学报, 2023, 44(09): 52-59. |
[4] | 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37. |
[5] | 邢剑, 张书诚, 于天娇, 唐文斌, 王亮, 徐珍珍, 梁波涛. 废弃聚苯硫醚纤维的回收再利用研究进展[J]. 纺织学报, 2023, 44(04): 222-229. |
[6] | 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101. |
[7] | 韩之欣, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界二氧化碳流体中的溶解性[J]. 纺织学报, 2022, 43(01): 153-160. |
[8] | 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21. |
[9] | 潘忆乐, 钱丽颖, 徐纪刚, 何北海, 李军荣. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33. |
[10] | 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173. |
[11] | 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101. |
[12] | 吴佳骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8. |
[13] | 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31. |
[14] | 王宏程, 郎润男, 王芳芳, 徐丰羽, 申景金. 压力鞋垫的足-地面反力预测模型与分析[J]. 纺织学报, 2019, 40(11): 175-181. |
[15] | 胡金花, 闫俊, 李红, 彭建钧, 郑来久, 郑环达, 何婷婷. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(08): 80-84. |
|