纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 10-18.doi: 10.13475/j.fzxb.20221108101

• 纤维材料 • 上一篇    下一篇

棉浆纤维素/质子型离子液体溶液的流变行为

马凯1, 邓璐璐2, 王学琳1, 石国民1, 邹光龙1()   

  1. 1.贵州民族大学 化学工程学院, 贵州 贵阳 550025
    2.西湖大学 工学院, 浙江 杭州 310024
  • 收稿日期:2022-11-29 修回日期:2023-05-31 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 邹光龙(1976—),男,教授,博士。主要研究方向为天然高分子溶解及加工。E-mail: 2364030537@qq.com。
  • 作者简介:马凯(1997—),男,硕士生。主要研究方向为生物基合成、天然高分子溶解。
  • 基金资助:
    国家自然科学基金项目(21363004);贵州民族大学自然科学基金项目(GZMUZK[2021]YB04);贵州省高等学校“绿色化学与资源环境创新团队”项目(黔教技[2022]13号)

Rheological behavior of cotton pulp cellulose/protic ionic liquid solutions

MA Kai1, DENG Lulu2, WANG Xuelin1, SHI Guomin1, ZOU Guanglong1()   

  1. 1. School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, China
    2. School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
  • Received:2022-11-29 Revised:2023-05-31 Published:2024-05-15 Online:2024-05-31

摘要:

为实现棉浆纤维素的绿色、高效溶解,促进其高值化利用,以质子型离子液体([DBNH][Lev])为溶剂,制备了5种不同质量分数的纤维素/[DBNH][Lev]溶液;借助核磁共振技术研究了纤维素在离子液体中的溶解机制,测定了纤维素溶液在不同条件下的稳态和动态流变行为,讨论了纤维素含量、温度和剪切速率等对均相聚合物溶液黏度的影响规律。结果表明:纤维素/[DBNH][Lev]溶液为典型的假塑性流体,对温度具有敏感性,且黏度随温度升高而降低;此外,该溶液在高频率下出现凝胶点,存在黏性流动为主的类液态向弹性形变为主的类固态转变,且温度越高转变点越向低频区移动,这为纤维素在离子液体中的流变响应提供理论基础,并对后续的纤维素加工工艺(如涂层、纺丝)提供技术指导。

关键词: 棉浆纤维素, 质子型离子液体, 溶解, 流变行为, Cox-Merz定律, 黏弹性

Abstract:

Objective Cellulose is one of the most abundant renewable natural polymers but cannot be effectively dissolved by traditional solvents owing to its highly ordered hydrogen-bond network structure and high crystallinity, which limits the further development and large-scale application of cellulose. Ionic liquids with special structures, due to their strong hydrogen-bond breaking ability, are widely used as a green and efficient solvent for natural polymer dissolution and processing. However, few studies are conducted on protic ionic liquid ([DBNH][Lev]) concerning the dissolution of cellulose and their solution properties. What's more levulinic acid derived from biomass resources endows green properties to [DBNH][Lev].

Method Protic ionic liquid was used as solvent to achieve the efficient dissolution of cotton cellulose under mild conditions. The dissolution mechanism of cellulose in ionic liquid and the steady and dynamic rheological behavior of cellulose solution were systematically studied by using nuclear magnetic resonance and rheological techniques respectively. The influence of factors such as cellulose concentration, shear rate, and temperature on the rheological behavior of cellulose/[DBNH][Lev] solution was thoroughly investigated. The morphology and mechanical properties of generated films from cellulose/PILs solution were studied in view of their potential application.

Results The rheological properties of cellulose are closely related to solvent category, cellulose concentration, cellulose molecular weight and experimental temperature. Firstly, it was identified that [DBNH][Lev] presented satisfactory dissolution ability to cellulose and had good solubility up to 5% to cellulose at 100 ℃. The ketone group in the Lev anion may provide a new hydrogen-bonding acceptor and donor in [DBNH][Lev] due to the keto-enol tautomerism, thus strengthening the interaction via hydrogen bonds between cellulose and [DBNH][Lev]. The steady-state rheological curves of cellulose/[DBNH][Lev] solutions with different mass concentrations at 25 ℃. For all case, a shear-thinning behavior is observed with increases in the shear rate and shear-thinning behavior becomes more remarkable when cellulose increases. Newtonian plateau phenomenon is observed when all samples were sheared at low shear rate. At the same shear rate, the apparent viscosity of cellulose solution gradually decreases with increasing temperature, which is consistent with classical polymer solutions. The power law coefficient n increases with the increasing concentration from 1.01 to 2.53 at 25 ℃. The turnover concentration from dilute to the semi-dilute unentangled regime defined as the overlap concentration (C*) was 0.83%. The viscosity-temperature dependence of solution was characterized by using the Arrhenius equation, the dissolution activation energy increases when cellulose increases. The cross-over point (gelation point) resulted in a shift to lower frequency when cellulose concentration increases at 25 ℃. It is found that both G' and G″ shift to higher frequency when the temperature decreases because more cellulose chains entangle together in low temperature at C-4 cellulose solution. Finally, it is also found that the generated films have satisfactory mechanical properties, indicating their practical application potential. The generation film at C-5 cellulose solution has the maximum tensile strength of 88.21 MPa and the elongation at breakup to 7.72%.

Conclusion A green and low-cost biomass derived protic ionic liquid was applied to successfully enhance its ability to break cellulose hydrogen bonds and achieve effective dissolution in this research. It has been demonstrated that the keto-enol tautomerism in the levulinic acid anion participates in the hydrogen-bond interaction in the cellulose dissolution process. The trend of shear rate and apparent viscosity of cellulose solutions under different mass concentration conditions is consistent, showing the characteristics of pseudoplastic fluid shear thinning. The apparent viscosity of cellulose is related to cellulose concentration and temperature; The overlap concentration for transition from diluted to semi diluted state is 0.83%, and the empirical Cox-Merz rule is not applicable to cellulose/[DBNH][Lev] solutions due to the apparent viscosity curve cannot overlap well with the complex viscosity curve. Therefore, the obtained results in this research provide a basic insight into the rheological response of cellulose in ionic liquid environment, and provide guidance for the processing of cellulose (such as coating and spinning).

Key words: cotton pulp cellulose, protic ionic liquid, dissolution, rheological behavior, Cox-Merz rule, viscoelasticity

中图分类号: 

  • O633.4

图1

质子型离子液体及其原料的核磁氢谱图"

图2

纤维素溶液和再生膜中氢键相互作用示意图和纤维素/[DBNH][Lev]溶解的核磁碳谱图"

图3

不同质量分数纤维素/[DBNH][Lev]溶液在 25 ℃下的稳态流变曲线"

图4

C-4纤维素/[DBNH][Lev]溶液不同温度下稳态流变性能"

图5

25 ℃下纤维素/[DBNH][Lev]溶液的零切速率黏度与质量分数的关系"

图6

不同质量分数纤维素/[DBNH][Lev]溶液的lnη0-1/T拟合曲线"

表1

棉浆纤维素/[DBNH][Lev]溶液的黏流活化能"

样品编号 Eη/(kJ·mol-1) 线性相关系数R2
C-1 45.937 5 0.989 1
C-2 61.622 6 0.985 2
C-3 67.509 1 0.992 7
C-4 74.248 0 0.994 9
C-5 80.388 6 0.983 3

图7

25 ℃下不同质量分数纤维素/[DBNH][Lev]溶液的储能模量、损耗模量与角频率的关系"

图8

C-4纤维素/[DBNH][Lev]溶液在不同温度下储能模量、损耗模量与角频率的关系"

图9

25 ℃下不同质量分数纤维素/[DBNH][Lev]溶液的Cox-Merz图"

图10

C-4再生纤维素膜的扫描电镜照片和C-3、C-4及C-5再生纤维素膜的应力-应变曲线"

[1] CHENG Q Z, WANG S Q, RIALS T G, et al. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(2): 218-224.
[2] VROMAN I, TIGHZERT L. Biodegradable polymers[J]. Materials, 2009, 2(2): 307-344.
[3] ANDANSON J M, BORDES E, DEVEMY J, et al. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids[J]. Green Chemistry, 2014, 16(5): 2528-2538.
[4] LI D, HUANG X Y, HUANG Y A, et al. Additive printed all-cellulose membranes with hierarchical structure for highly efficient separation of oil/water nanoemulsions[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44375-44382.
[5] WANG G, HE Y, WANG H, et al. A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation[J]. Green Chemistry, 2015, 17(5): 3093-3099.
[6] THAKUR V K, VOICU S I. Recent advances in cellulose and chitosan based membranes for water purification: a concise review[J]. Carbohydrate Polymers. 2016, 146(1): 148-165.
[7] KO Y, KWON M, BAE W K, et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers[J]. Nature Communications, 2017, 8(14): 1-11.
[8] RUHS P A, MALOLLARI K G, BINELLI M R, et al. Conformal bacterial cellulose coatings as lubricious surfaces[J]. ACS Nano, 2020, 14 (4): 3885-3895.
doi: 10.1021/acsnano.9b09956 pmid: 32150387
[9] HULT E L, IOTTI M, LENES M. Efficient approach to high barrier packaging using microfibrillar cellulose and shellac[J]. Cellulose, 2010, 17 (3):575-586.
[10] TAKAYASHI M, DAISUKE T, NOBUTAKE T, et al. Solution properties of celluloses from different biological origins in LiCl-DMAc[J]. Cellulose, 2001, 8(4): 275-282.
[11] FINK H P, WEIGEL P, PURZ H J, et al. Structure formation of regenerated cellulose materials from NMMO-solutions[J]. Progress in Polymer Science, 2001, 26(9): 1473-1524.
[12] NAUSHAD M, ALOTHMAN Z A, KHAN A B, et al. Effect of ionic liquid on activity, stability, and structure of enzymes: a review[J]. International Journal of Biological Macromolecules, 2012, 51(4): 555-560.
doi: 10.1016/j.ijbiomac.2012.06.020 pmid: 22732130
[13] VASCONCELOS A, FREDDI G, CAVACO-PAULO A. Biodegradable materials based on silk fibroin and keratin[J]. Biomacromolecules, 2008, 9(4): 1299-1305.
doi: 10.1021/bm7012789 pmid: 18355027
[14] SUN N, RAHMAN M, QIN Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate[J]. Green Chemistry, 2009, 11(5): 646-655.
[15] SWATLOSKI R P, SPEAR S K, ROGERS R D, et al. Dissolution of cellose with lonic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
[16] DISSANAYAKE N, THALANGAMAARACHCHIGE V D, THAKURATHI M, et al. Dissolution of cotton cellulose in 1:1 mixtures of 1-butyl-3-methylimidazolium methylphosphonate and 1-alkylimidazole co-solvents[J]. Carbohydrate Polymer, 2019, 221(1): 63-72.
[17] BRANDT-TALBOT A, GSCHWEND F J V, FENNELL P S, et al. An economically viable ionic liquid for the fractionation of lignocellulosic biomass[J]. Green Chemistry, 2017, 19(13): 3078-3102.
[18] GSCHWEND F J V, MALARET F, SHINDE S, et al. Rapid pretreatment of miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures[J]. Green Chemistry, 2018, 20(15): 3486-3498.
[19] MACFARLANE D R, SEDDON K R. Lonic liquids-progress on the fundamental issues[J]. Australian Journal of Chemistry, 2007, 60(1): 3-5.
[20] GREAVES T L, WEERAWARDENA A, KRODKIEWSKA I, et al. Protic ionic liquids: physicochemical properties and behavior as amphiphile self-assembly solvents[J]. The Journal of Physical Chemistry B, 2008, 112(3): 896-905.
[21] KING A W T, ASIKKALA J, MUTIKAINEN I, et al. Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing[J]. Angewandte Chemie-International Edition, 2011, 50(28): 6301-6305.
[22] ACHINIVU E C, HOWARD R M, Li G Q, et al. Lignin extraction from biomass with protic ionic liquids[J]. Green Chemistry, 2014, 16(3): 1114-1119.
[23] BYRNE N, ANGELL C A. Formation and dissolution of hen egg white lysozyme amyloid fibrils in protic ionic liquids[J]. Chemical Communications, 2009, 9(9): 1046-1048.
[24] LEE S Y, OGAWA A, WATANABE M, et al. Nonhumidified intermediate temperature fuel cells using protic ionic liquids[J]. Journal of the American Chemical Society, 2010, 132(28): 9764-9773.
[25] DENG L L, YUE W, XIE H B, et al. Biobased protic ionic liquids as sustainable solvents for wool keratin/cellulose simultaneous dissolution: solution properties and composited membrane preparation[J]. ACS Sustainable Chemistry & Engineering 2022, 10(6): 2158-2168.
[26] BECHERINI S, MEZZETTA A, GUAZZELLI L, et al. Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose[J]. New Journal of Chemistry, 2019, 43(11):4554-4561.
[27] SESCOUSSE R, LE K A, BUDTOVA T, et al. Viscosity of cellulose-imidazolium-based ionic liquid solu-tions[J]. The Journal of Physical Chemistry B, 2010, 114 (21): 7222-7228.
[28] 于勤, 张丽, 曹建华, 等. 二醋酸纤维素纤维纺丝溶液流变性能[J]. 纺织学报, 2013, 34(6):8-12.
YU Qin, ZHANG Li, CAO Jianhua, et al. Rheological property of cellulose diacetate spinning dope[J]. Journal of Textile Research, 2013, 34(6): 8-12.
[29] 闫红芹. 纤维素/离子液体溶液流变行为的研究[J]. 纺织学报, 2009, 30(12):9-12.
YAN Hongqin. Study on rheological property of cellulose/ionic liquids[J]. Journal of Textile Research, 2009, 30(12): 9-12.
[30] 宋俊, 谭晓瑞, 程博闻, 等. [AMIM]Cl为溶剂的纤维素溶液的流变性能[J]. 纺织学报, 2010, 31(11):11-15.
SONG Jun, TAN Xiaorui, CHENG Bowen, et al. Rheological behavior of cellulose solution with [AMIM]Cl as solvent[J]. Journal of Textile Research, 2010, 31(11): 11-15.
[31] WANG M, ZHAO T, WANG G H, et al. Blend films of human hair and cellulose prepared from an ionic liquid[J]. Textile Research Journal, 2014, 84 (12): 1315-1324.
[32] 李根, 刘跃军, 谭海英, 等. 微晶纤维素/聚丁二酸丁二醇酯复合材料的流变行为[J]. 复合材料学报, 2017, 34 (1):210-216.
LI Gen, LIU Yuejun, TAN Haiying, et al. Rheological behavior of microcrystalline cellulose/poly (butylene succinate) composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 210-216.
[33] ZHANG J P, GOTOH Y, POTTHAST A, et al. High performance cellulose fibers regenerated from 1-butyl-3-methylimidazolium chloride solution: effects of viscosity and molecular weight[J]. Journal of Applied Polymer Science, 2019, 137(19): 48684-48688.
[34] LU F, WANG L J, ZHANG C, et al. Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sul-foxide[J]. Cellulose, 2015, 22(5): 3077-3087.
[35] SONG J, CAO H, LIU F, et al. Effect of lithium chloride on cellulose/1-allyl-3-methylimidazolium chloride solutions[J]. Rheological Acta, 2016, 55(5): 423-430.
[36] CHAE D W, KIM B C, LEE W S. Rheological characterization of cellulose solutions in N-methyl morpholine N-oxide monohydrate[J]. Journal of Applied Polymer Science, 2002, 86(1): 216-222.
[1] 颜素崟, 周丽春, 郑庭, 金福江. 蒽醌型染料分子羟基最优取代位置的多目标优化设计方法[J]. 纺织学报, 2024, 45(01): 128-135.
[2] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
[3] 王小康, 解开放, 周衡书, 包新军, 徐应盛. 醋化级芦苇溶解浆的制备及其性能[J]. 纺织学报, 2023, 44(09): 52-59.
[4] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[5] 邢剑, 张书诚, 于天娇, 唐文斌, 王亮, 徐珍珍, 梁波涛. 废弃聚苯硫醚纤维的回收再利用研究进展[J]. 纺织学报, 2023, 44(04): 222-229.
[6] 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101.
[7] 韩之欣, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界二氧化碳流体中的溶解性[J]. 纺织学报, 2022, 43(01): 153-160.
[8] 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
[9] 潘忆乐, 钱丽颖, 徐纪刚, 何北海, 李军荣. Lyocell纤维纺丝浆粕溶解性的影响因素分析[J]. 纺织学报, 2021, 42(10): 27-33.
[10] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[11] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[12] 吴佳骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8.
[13] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
[14] 王宏程, 郎润男, 王芳芳, 徐丰羽, 申景金. 压力鞋垫的足-地面反力预测模型与分析[J]. 纺织学报, 2019, 40(11): 175-181.
[15] 胡金花, 闫俊, 李红, 彭建钧, 郑来久, 郑环达, 何婷婷. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(08): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!