纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 129-137.doi: 10.13475/j.fzxb.20230102501
薛宝霞1,2,3, 杨色1,2, 张春艳1,2, 刘晶1,2, 刘勇3, 程伟3, 张利3, 牛梅1,2()
XUE Baoxia1,2,3, YANG Se1,2, ZHANG Chunyan1,2, LIU Jing1,2, LIU Yong3, CHENG Wei3, ZHANG Li3, NIU Mei1,2()
摘要:
为扩大含银抗菌水凝胶的应用和实现缓释抗菌,采用水凝胶复合织物的构建策略,将化学交联与紫外光引发相结合,通过聚氮异丙基丙烯酰胺(PNIPAM)/载银氧化石墨烯(GO-Ag)抗菌水凝胶复合棉织物,形成新型水凝胶复合织物一体化敷料,并探讨不同层数棉织物复合水凝胶对敷料结构与抗菌性能、拉伸性能以及生物安全性等的影响。结果表明:PNIPAM/GO-Ag抗菌水凝胶与3层棉织物构筑的一体化敷料的综合性能优异;在湿态下,一体化敷料比单一棉织物的断裂强力提升73.7%,达到370 N;敷料的体外细胞毒性呈0级,溶血率小于5%,显示出良好的生物安全性;其对大肠杆菌和金黄色葡萄球菌的抗菌率均达到98%以上,在24 h内具有缓慢释放银离子的效果;抗菌作用主要通过持续释放银离子、诱导细菌产生活性氧造成其氧化损伤等多种作用,从而破坏细菌细胞结构。
中图分类号:
[1] |
WANG H N, XU Z J, ZHAO M, et al. Advances of hydrogel dressings in diabetic wounds[J]. Biomaterials Science, 2021, 9(5): 1530-1546.
doi: 10.1039/d0bm01747g pmid: 33433534 |
[2] | 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020, 41(1):26-31. |
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings[J]. Journal of Textile Research, 2020, 41(1):26-31. | |
[3] | PENG Y, HE D F, GE X, et al. Construction of heparin-based hydrogel incorporated with Cu-5.4O ultrasmall nanozymes for wound healing and inflammation inhibition[J]. Bioactive Materials, 2021, 6(10): 3109-3124. |
[4] | BLANCO G E, SOUZA C W, BWENARDO M P, et al. Antimicrobially active gelatin/[Mg-Al-CO3]-LDH composite films based on clove essential oil for skin wound healing[J]. Materials Today Communications, 2021. DOI:10.1016/j.mtcomm.2021.102169. |
[5] | HE Y X, LI Y, SUN Y D, et al. A double-network polysaccharide-based composite hydrogel for skin wound healing[J]. Carbohydrate Polymers, 2021. DOI:10.1016/j.carbpol.2021.117870. |
[6] |
CHENG H, SHI Z, YUE K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities[J]. Acta Biomaterialia, 2021, 124: 219-232.
doi: 10.1016/j.actbio.2021.02.002 pmid: 33556605 |
[7] | JACOB S, NAIR A B, SHAH J, et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management[J]. Pharmaceutics, 2021. DOI:10.3390/pharmaceutics13030357. |
[8] | XIU Z M, ZHANG Q B, PUPPALA H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano Letters, 2012, 12(8): 4271-4275. |
[9] | MARAMBIO J C, HOEK E M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12: 1531-1551. |
[10] | 高党鸽, 李亚娟, 吕斌, 等. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(8):171-178. |
GAO Dangge, LI Yajuan, LÜ Bin, et al. Research progress in preparation of nano silver and its application in textiles[J]. Journal of Textile Research, 2018, 39(8):171-178. | |
[11] | CHEN G H, WENG W G, WU D J, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon, 2004, 42(4): 753-759. |
[12] | BARINOV A, MALCIOGLU O B, FABRIS S, et al. Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations[J]. The Journal of Physical Chemistry C, 2009, 113(21): 9009-9013. |
[13] | SU Y X, LI T, MAO Y Y, et al. High-efficiency antibacterial and barrier properties of natural rubber/graphene oxide@Ag/carboxymethyl chitosan compo-sites[J]. Polymer-Plastics Technology and Materials, 2023, 62(3): 270-280. |
[14] | SIRAJUL H, MARIA R, FARID M, et al. Antibacterial and antioxidant screening applications of reduced-graphene oxide modified ternary SnO2-NiO-CuO nanocomposites[J]. Arabian Journal of Chemistry, 2023. DOI: 10.1016/j.arabjc.2023.104917. |
[15] | CAI X, LIN M, TAN S Z, et al. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity[J]. Carbon, 2012, 50(10): 3407-3415. |
[16] | LIAO M J, ZHAO Y Y, PAN Y, et al. A good adhesion and antibacterial double-network composite hydrogel from PVA, sodium alginate and tannic acid by chemical and physical cross-linking for wound dressings[J]. Journal of Materials Science, 2023, 58(13): 5756-5772. |
[17] | 于志财, 刘金如, 何华玲, 等. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(9): 180-186. |
YU Zhicai, LIU Jinru, HE Hualing, et al. Research and application progress of flame retardant fabric based on polymer hydrogel[J]. Journal of Textile Research, 2021, 42(9): 180-186. | |
[18] | 冉换换. 基于碳点和聚多巴胺的新型纳米材料的制备及其在抗菌方面的应用[D]. 南京: 东南大学, 2020:56-61. |
RAN Huanhuan. Preparation of novel nanomaterials based on carbon point and polydopamine and their application in antibacterial activity[D]. Nanjing: Southeast University, 2020:56-61. | |
[19] | MAZUR P, SKIBA-KUREK I, MROWIEC P, et al. Synergistic ROS-associated antimicrobial activity of silver nanoparticles and gentamicin against staphylococcus epidermidis[J]. International Journal of Nanomedicine, 2020, 15(1): 3551-3562. |
[20] | GAO Y, GE X J, CHEN L, et al. Study on silver species released from silver nanotextiles by single particle inductively coupled plasma-mass spectro-metry[J]. Chinese Journal of Analytical Chemistry, 2021, 49(2): 271-281. |
[21] | 钟言沁. 丝素蛋白基静电纺多级复合纤维敷料的制备及性能研究[D]. 天津: 天津工业大学, 2021:40-54. |
ZHONG Yanqin. Preparation and properties of multistage composite fiber dressing based on silk fibroin electrostatic spinning[D]. Tianjin: Tiangong University, 2021:40-54. | |
[22] | ZARE G M, DAEMI H, MOHAMMADI J, et al. Improving anti-hemolytic, antibacterial and wound healing properties of alginate fibrous wound dressings by exchanging counter-cation for infected full-thickness skin wounds[J]. Materials Science and Engineering: C, 2020. DOI:10.1016/j.msec.2019.110321. |
[23] |
马跃, 郭静, 殷聚辉, 等. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
doi: 10.13475/j.fzxb.20200307207 |
MA Yue, GUO Jing, YIN Juhui, et al. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers[J]. Journal of Textile Research, 2020, 41(11):34-40.
doi: 10.13475/j.fzxb.20200307207 |
|
[24] | 朱飞, 杨雪, 苏静, 等. 酶促咖啡酸制备超疏水棉织物及其油水分离应用研究[J]. 材料导报, 2023, 4(16): 1-12. |
ZHU Fei, YANG Xue, SU Jing, et al. Application of superhydrophobic cotton fabric prepared by enzymatic caffeic acid and its oil-water separation[J]. Materials Reports, 2023, 4(16):1-12. | |
[25] | MEENA K, MUTHU K, MEENATCHI V, et al. Spectrochimica acta part a: molecular and biomolecular spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 124: 663-669. |
[26] | IBRAHIM E H, KILANY M, GHRAMH H A, et al. Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nano-particles (AgNPs) using Juniperus procera[J]. Saudi Journal of Biological Sciences, 2019, 26(7): 1689-1694. |
[1] | 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120. |
[2] | 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26. |
[3] | 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66. |
[4] | 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7. |
[5] | 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119. |
[6] | 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113. |
[7] | 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27. |
[8] | 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(03): 227-235. |
[9] | 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20. |
[10] | 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178. |
[11] | 顾佳华, 戴鑫鑫, 邹专勇, 刘诗仪, 张显涛, 韩旭, 陆斌, 张寅江. 表面刻蚀/聚硅氧烷修饰纯棉水刺材料的制备及其性能[J]. 纺织学报, 2024, 45(02): 189-197. |
[12] | 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27. |
[13] | 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239. |
[14] | 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38. |
[15] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
|