纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 138-146.doi: 10.13475/j.fzxb.20220603201

• 染整工程 • 上一篇    下一篇

基于熔喷非织造材料的温度传感器制备及其传感性能

王楠1,2, 孙辉2,3(), 于斌2,3, 许磊2,3,4, 朱祥祥2,3   

  1. 1.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    2.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    3.浙江理工大学 产业用纺织材料制备技术浙江省重点实验室, 浙江 杭州 310018
    4.苏州经贸职业技术学院, 江苏 苏州 215009
  • 收稿日期:2023-07-20 修回日期:2024-01-26 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 孙辉(1976—),女,讲师,博士。主要研究方向为纺织材料的功能化改性。E-mail:sunhui@zstu.edu.cn。
  • 作者简介:王楠(1995—),女,硕士生。主要研究方向为智能可穿载纺织品。
  • 基金资助:
    浙江省自然科学基金项目(LY19E030011);江苏省自然科学基金项目(BK20201182)

Preparation and sensing performances of flexible temperature sensor prepared from melt-blown nonwoven materials

WANG Nan1,2, SUN Hui2,3(), YU Bin2,3, XU Lei2,3,4, ZHU Xiangxiang2,3   

  1. 1. College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering (International Insititute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Suzhou Vocational College of Economics and Trade, Suzhou, Jiangsu 215009, China
  • Received:2023-07-20 Revised:2024-01-26 Published:2024-05-15 Online:2024-05-31

摘要:

为结合织物的柔软性、舒适度和耐磨性制备低成本、高性能的可穿戴温度传感器,以超声波处理工艺将不同浓度比的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)和碳纳米管(CNTs)共同负载在聚对苯二甲酸丁二酯(PBT)熔喷非织造材料表面,制备了PEDOT:PSS/CNTs/PBT熔喷非织造材料的温度传感器。借助扫描电子显微镜、X 射线衍射仪和傅里叶变换红外光谱仪对温度传感器的微观形貌、化学结构进行表征与分析,并对其热稳定性能、传感性能和力学性能进行测试与研究。结果表明,所制备的温度传感器在25~80 ℃范围内,灵敏度可达-0.71%/℃,响应时间较快(18 s),线性度较好(R2=0.99),迟滞度低至4.98%,具有良好的重复使用性及长期稳定性,并且在37~38 ℃的温度范围内感应精度可达0.1 ℃。所制备的温度传感器能够对环境温度和人体表面温度进行实时稳定监测,具有广阔的应用前景。

关键词: 聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸, 聚苯二甲酸丁二酯, 熔喷非织造材料, 碳纳米管, 温度传感器

Abstract:

Objective Most of high sensitivity temperature sensors are prepared from membranes, metals and other substrate materials, and flexible textile materials with good processing performance and low cost are increasingly used much for making flexible sensors, such as wearable electronics for e-skin and health monitoring and flexible temperature sensors which have advantages in simple structure, wide range of applications and low preparation cost. This research explores the preparation and sensing performance of flexible textile temperature sensors prepared from melt-blown nowoven textiles.

Method PEDOT:PSS/CNTs/PBTNW flexible temperature sensors were prepared by co-loading poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) and carbon nanotubes (CNTs) with different concentration ratios on the surface of PBT melt-blown nonwoven (PBTNW) by a simple ultrasonic process. The method is simple, and the temperature sensor can monitor the human body as well as the environment temperature, which expands the application field of textile materials.

Results SEM evaluation showed that the interstices of PBTNW loaded with PEDOT:PSS polymer were filled with a small number of one-dimensional CNTs, forming a one-dimensional and two-dimensional structure, which in turn formed a three-dimensional networls structure easy for electrical conductivity and temperature sensing. The PEDOT:PSS and the CNTs formed a complete conductive network with the PBTNW as the backbone. The presence of the polymer PEDOT:PSS mitigated the agglomeration of CNTs better than loading CNTs alone. The temperature sensing test results showed that the prepared temperature sensor achieved a sensitivity of up to -0.71%/℃ in the range of 25-80 ℃, fast response time (18 s), good linearity (R2=0.99), hysteresis as low as 4.98%, good reusability as well as a long term stability, and a sensing accuracy of 0.1 ℃ in the temperature range of 37-38 ℃. The thermal stability and mechanical properties of PBTNW and PEDOT:PSS/CNTs/PBTNW with different loading ratios were analyzed. After loading PEDOT:PSS and different ratios of PEDOT:PSS and CNTs on the surface of PBTNW, the thermal stability and mechanical properties of the prepared flexible temperature sensors were found to be the best when the ratio of PEDOT:PSS to CNTs was 1∶0.6.

Conclusion Fast response time and high sensitivity gives flexible temperature sensors not only in the environmental temperature measurement of the possibility, but also expand its possibility in the field of human body temperature monitoring. It is indicated that textile materials as a lower cost and simple processing methods of flexible materials have the prospect for applications in the field of flexible sensors. The reliability of the prepared temperature sensors was proved experimentally. However, it is difficult to have high strength due to the characteristics of nonwoven materials themselves, which limits the long-term use of nonwoven temperature sensors.

Key words: poly(3,4-ethylene dioxythiophene)-polystyrene sulfonic acid, polybutylene terephalate, melt-blown nonwoven, carbon nanotube, flexible temperature sensor

中图分类号: 

  • TS176

图1

温度传感器的制备流程图"

图2

不同PBTNW试样的SEM照片"

图3

不同PBTNW温度传感器的红外光谱图"

图4

不同PBTNW温度传感器的XRD谱图"

图5

不同PBTNW试样的TGA曲线"

表1

不同PBTNW试样的热分解温度"

试样名称 热分解温度/℃
T0.95 T0.95
PBTNW 300.2 442.2
PEDOT:PSS/PBTNW 302.0 449.5
PEDOT:PSS/CNTs0.3/PBTNW 320.5 450.4
PEDOT:PSS/CNTs0.6/PBTNW 342.2 456.3
PEDOT:PSS/CNTs0.9/PBTNW 325.3 446.5

图6

PEDOT:PSS/CNTs/PBTNW温度传感器的灵敏度"

图7

PEDOT:PSS/CNTs0.6/PBTNW温度传感器电阻随温度变化曲线"

图8

PEDOT:PSS/CNTs0.6/PBTNW温度传感器的重复性"

图9

PEDOT:PSS/CNTs0.6/PBTNW温度传感器的稳定性"

图10

PEDOT:PSS/CNTs0.6/PBTNW温度传感器的响应时间"

图11

PEDOT:PSS/CNTs0.6/PBTNW温度传感器的精度"

图12

PEDOT:PSS/CNTs0.6/PBTNW温度传感器的迟滞性"

图13

PEDOT:PSS/CNTs/PBTNW温度传感器的应力-应变曲线"

表2

不同PBTNW试样的纵向断裂强度和断裂伸长率"

试样名称 断裂强度/
(N·tex-1)
断裂
伸长率/%
PBTNW 8.301±0.220 337.9±3.12
CNTs/PBTNW 6.640±0.550 295.4±4.12
PEDOT:PSS/PBTNW 8.940±0.320 271.3±3.14
PEDOT:PSS/CNTs0.3/PBTNW 10.311±0.680 339.6±5.23
PEDOT:PSS/CNTs 0.6/PBTNW 12.421±1.102 342.6±2.98
PEDOT:PSS/CNTs0.9/PBTNW 13.381±0.930 299.4±3.17

图14

PEDOT:PSS/CNTs0.6/PBTNW温度传感器的实际应用"

[1] GU J, ZHANG H, CHEN F, et al. Mini review on flexible and wearable electronics for monitoring human health information[J]. Nanoscale Research Letters, 2020, 14(1):263.
[2] 苏毅. 面向康复机器人的柔性温度传感器的研究[D]. 太原: 中北大学, 2021:2-4.
SU Yi. Research on flexible temperature sensor for rehabilitation robot[D]. Taiyuan: North University of Chin, 2021:2-4.
[3] NAG A, MUKHOPADHYAY S C, KOSEL J. Wearable flexible sensors: a review[J]. IEEE Sensors Journal, 2017, 17(13): 3949-3960.
[4] 张弛, 杨晓亮, 唐瑞, 等. 微机电系统温度传感器研究进展及产业现状综述[J]. 科技与创新, 2021(4):83-85.
ZHANG Chi, YANG Xiaodong, TANG Rui, et al. Research progress and industry status of MEMS temperature sensor[J]. Science and Innovation, 2021(4):83-85.
[5] 闫宗瑶, 刘建勇, 方子鑫. 柔性温度传感器的加工及在纺织领域的应用[J]. 针织工业, 2021(10):71-75.
YAN Zongyao, LIU Jianyong, FANG Zixin. The processing of flexible temperature sensor and its application in textile field[J]. Knitting Industries, 2021(10):71-75.
[6] 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020, 26(1):16-23.
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional Materials and Devices, 2020, 26(1):16-23.
[7] 石素宇, 王利娜, 辛长征, 等. 废弃非织造布再利用的前处理及应用研究[J]. 现代纺织技术, 2018, 26(6):29-33.
[11] WANGY F, SEKINE T, TAKEDA Y, et al. Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring[J]. Scientific Reports, 2020. DOI: 10.1038/s41598-020-59432-2.
[12] DU Y, ZHANG Q, ZHUO K, et al. Study on the performance oftemperature-stabilised flexible strain sensors based on silvernanowires[J]. Micro & Nano Letters, 2019, 14(2):168-172.
[13] LIU Q X, TAI H L, ZHEN Y, et al., A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Material Technology, 2019. DOI: 10.1002/admt.201800594.
[7] SHI Suyu, WANG Lina, XIN Changzheng, et al. Research on pre-treatment and application of reuse of waste nonwoven fabric[J]. Modern Textile Technology, 2018, 26(6):29-33.
[8] 徐延光, 马炳和, 邓进军. 基于MEMS技术的柔性Ni基热敏传感器阵列研制[J]. 半导体技术, 2009, 34(7):697-700.
XU Yanguang, MA Binghe, DENG Jinjun. Fabrication of flexible Ni based thermal sensor array based on MEMS Technology[J]. Semiconductor Technology, 2009, 34(7):697-700.
[9] 徐骁雯, 张健, 陶佰睿. 基于喷墨打印技术的柔性温度传感器阵列[J]. 齐齐哈尔大学学报(自然科学版), 2016, 32(2):19-22.
XU Xiaowen, ZHANG Jian, TAO Bairui. Flexible temperature sensor array based on inkjet printing technology[J]. Journal of Qiqihar University (Natural Science Edition), 2016, 32(2):19-22.
[10] 何柳丰, 窦文堃, 刘军山. 聚酰亚胺柔性温度传感器的制作与性能测试[J]. 机电工程技术, 2018, 47(11):5-8, 80.
HE Liufeng, DOU Wenkun, LIU Junshan. Fabrication and performance test of flexible polyimide temperature sensor[J]. Mechanical & Electrical Engineering Technology, 2018, 47(11):5-8, 80.
[1] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[2] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[3] 宋功吉, 王煜煜, 王善龙, 王建南, 许建梅. 碳纳米管掺杂高聚物制备人工神经导管的研究进展[J]. 纺织学报, 2023, 44(11): 232-239.
[4] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[5] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[6] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[7] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[8] 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34.
[9] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[10] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[11] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[12] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[13] 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91.
[14] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[15] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!