纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 183-192.doi: 10.13475/j.fzxb.20230601001
鞠宇1,2,3, 王朝晖1,2,3(), 李博一1, 叶勤文1
JU Yu1,2,3, WANG Zhaohui1,2,3(), LI Boyi1, YE Qinwen1
摘要:
在服装生产线中,管理者通常凭借直觉和经验进行工人调度和工序编排,缺少基于历史生产相关数据的分析,难以进行产前预判。为此,充分利用历史生产数据,使用机器学习技术科学地预判工人产前效率,以提高生产线的平衡率。首先,收集了某工厂13个订单的526个生产数据并通过分位数划分法对效率进行等级划分。其次,基于生产数据的特征,在员工生产效率预测任务中选择了随机森林集成学习模型,并与其它8个模型进行了综合比较。最后,通过递归式特征消除法,从15个初始特征中筛选出实现模型最大预测性能的最优特征组以优化模型。优化后结果显示,随机森林模型展现出优异的预测性能,在回归任务中,验证集R2值为0.836,而均方根误差值为0.116;在分类任务中,其验证集平衡F分数值为0.823。研究结果表明,使用随机森林模型可以实现产前工人效率的有效预测,预测结果可避免管理者在调度时做出错误决策,同时为生产线的优化和柔性调度提供参考。
中图分类号:
[1] | CAO H Q, JI X F. Prediction of garment production cycle time based on a neural network[J]. Fibres & Textiles in Eastern Europe, 2021, 29(1): 8-12. |
[2] | KUMAR D V, MOHAN G M, MOHANASUNDARAM K M. Design & implementation of the production line in garment industry[J]. Industria Textila, 2022, 73(6): 687-692. |
[3] | 闫亦农, 刘立枝, 崔慧荣. 直线递进式服装吊挂生产流水线优化设计[J]. 丝绸, 2018, 55(11): 67-72. |
YAN Yinong, LIU Lizhi, CUI Huirong. Optimized design of linear progressive hanging production line for garment[J]. Journal of Silk, 2018, 55(11): 67-72. | |
[4] | 宋莹. 基于层次分析法的服装流水线影响因素等级评价[J]. 毛纺科技, 2020, 48(3): 61-64. |
SONG Ying. Evaluation of influencing factors level of garment line based on analytic hierarchy process[J]. Wool Textile Journal, 2020, 48(3): 61-64. | |
[5] | 荀培莉, 杜劲松, 李津, 等. 服装流水线人员与生产岗位契合度模型[J]. 东华大学学报(自然科学版), 2022, 48(5): 108-114,122. |
XUN Peili, DU Jinsong, LI Jin, et al. A model of matching degree between the personnel and production post in garment assembly line[J]. Journal of Donghua University(Natural Science), 2022, 48(5): 108-114,122. | |
[6] | CHOURABI Z, BABAY A, KHEDHER F, et al. A new objective function for the assembly line balancing optimization in terms of workers' global competence[J]. Industria Textila, 2020, 71(4): 398-407. |
[7] | XU H J, XU B J, YAN J. Balancing apparel assembly lines through adaptive ant colony optimization[J]. Textile Research Journal, 2019, 89(18): 3677-3691. |
[8] | 胡少营, 张龙琳, 张文斌. 采用熟练率的服装流水线节拍设计模型[J]. 纺织学报, 2015, 36(5): 133-138. |
HU Shaoying, ZHANG Longlin, ZHANG Wenbin. Cycle time design model in garment assembly line based on skilled ratio[J]. Journal of Textile Research, 2015, 36(5): 133-138. | |
[9] | BUAPETCH A, LAGAMPAN S, FAUCETT J, et al. The thai version of effort-reward imbalance question-naire (Thai ERIQ): a study of psychometric properties in garment workers[J]. Journal of Occupational Health, 2008, 50(6): 480-491. |
[10] |
MITCHELL R J, BATES P. Measuring health-related productivity loss[J]. Population Health Management, 2011, 14(2): 93-98.
doi: 10.1089/pop.2010.0014 pmid: 21091370 |
[11] | JAVED I, MD DAWAL S Z, NUKMAN Y, et al. Prediction of work productivity outcomes by identifying critical risk factors among garment industry workers[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(4): 2238-2249. |
[12] |
谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
doi: 10.13475/j.fzxb.20200100406 |
XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10): 144-149.
doi: 10.13475/j.fzxb.20200100406 |
|
[13] | 孙影慧, 杜劲松. 服装单件流水线的Flexsim仿真[J]. 纺织学报, 2018, 39(6): 155-161,166. |
SUN Yinghui, DU Jinsong. Simulation of one-piece flow garment assembly line based on Flexsim software[J]. Journal of Textile Research, 2018, 39(6): 155-161,166. | |
[14] | 汪静平, 吴小丹, 马杜娟, 等. 基于机器学习的遥感反演:不确定性因素分析[J]. 遥感学报, 2023, 27(3): 790-801. |
WANG Jingping, WU Xiaodan, MA Dujuan, et al. Remote sensing retrieval based on machine learning algorithm uncertainty analysis[J]. National Remote Sensing Bulletin, 2023, 27(3): 790-801. | |
[15] | CHEN G Y H, CHEN P S, DANG J F, et al. Applying meta-heuristics algorithm to solve assembly line balancing problem with labor skill level in garment industry[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 1438-1450. |
[16] | 原丕业, 刘畅, 刘佳楠, 等. 基于学习遗忘疲劳恢复模型的员工生产率研究[J]. 佳木斯大学学报(自然科学版), 2020, 38(6): 112-117. |
YUAN Piye, LIU Chang, LIU Jianan, et al. Research on employee productivity based on learning-forgetting-fatigue-recovery model[J]. Journal of Jiamusi University(Natural Science), 2020, 38(6): 112-117. | |
[17] | 叶宁, 阎玉秀. 多品种小批量服装生产的工时定额制定方法[J]. 纺织学报, 2012, 33(6): 101-106. |
YE Ning, YAN Yuxiu. Man-hour quota determination method for garment production of multi-variety in small batch[J]. Journal of Textile Research, 2012, 33(6): 101-106. | |
[18] | LIU X H, TIAN M, SU Y, et al. Predicting the mechanical strength of fire protective fabrics after thermal aging using machine learning[J]. AATCC Journal of Research, 2021, 8(2): 46-50. |
[19] | DHASARADHAN K, JAICHANDRAN R. Performance analysis of machine learning algorithms in heart disease prediction[J]. Concurrent Engineering-Research and Applications, 2022(3): 335-343. |
[20] |
杨杏丽. 分类学习算法的性能度量指标综述[J]. 计算机科学, 2021, 48(8): 209-219.
doi: 10.11896/jsjkx.200900216 |
YANG Xingli. Survey for performance measure index of classification learning algorithm[J]. Computer Science, 2021, 48(8): 209-219.
doi: 10.11896/jsjkx.200900216 |
|
[21] | 韦琦, 卫琦, 徐解刚, 等. 基于机器学习算法的ET0预测研究[J]. 节水灌溉, 2022, 327(11): 9-17. |
WEI Qi, WEI Qi, XU Jiegang, et al. Research on ET0 prediction based on machine learning algorithm[J]. Water Saving Irrigation, 2022, 327(11): 9-17. | |
[22] | 孙德亮, 陈丹璐, 密长林, 等. 基于随机森林-特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 地质力学学报, 2023, 29(2): 202-219. |
SUN Deliang, CHEN Danlu, MI Changlin, et al. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model[J]. Journal of Geomechanics, 2023, 29(2): 202-219. | |
[23] | 苏欣, 高晓旭, 赖复尧, 等. 基于机器学习的零件加工质量预测及优化[J]. 机械制造与自动化, 2022, 51(5): 136-139. |
SU Xin, GAO Xiaoxu, LAI Fuyao, et al. Prediction and optimization of processing quality of machine part based on machine learning[J]. Machine Building & Automation, 2022, 51(5): 136-139. |
[1] | 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238. |
[2] | 王梦蕾, 王静安, 高卫东. 计算机辅助配棉技术研究进展[J]. 纺织学报, 2023, 44(08): 225-233. |
[3] | 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236. |
[4] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
[5] | 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32. |
[6] | 杨景朝, 蒋秀明, 董九志, 陈云军, 梅宝龙. 基于机器学习的整体穿刺加压参数预测方法[J]. 纺织学报, 2019, 40(08): 157-163. |
|