纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 183-192.doi: 10.13475/j.fzxb.20230601001

• 服装工程 • 上一篇    下一篇

基于机器学习的服装生产线员工效率预测

鞠宇1,2,3, 王朝晖1,2,3(), 李博一1, 叶勤文1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室, 上海 200051
    3.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2023-06-06 修回日期:2023-12-14 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 王朝晖(1967—),女,教授,博士。主要研究方向为服装先进制造。E-mail:wzh_sh2007@dhu.edu.cn。
  • 作者简介:鞠宇(2000—),男,硕士生。主要研究方向为服装先进制造。
  • 基金资助:
    上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Employee efficiency prediction of garment production line based on machine learning

JU Yu1,2,3, WANG Zhaohui1,2,3(), LI Boyi1, YE Qinwen1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2023-06-06 Revised:2023-12-14 Published:2024-05-15 Online:2024-05-31

摘要:

在服装生产线中,管理者通常凭借直觉和经验进行工人调度和工序编排,缺少基于历史生产相关数据的分析,难以进行产前预判。为此,充分利用历史生产数据,使用机器学习技术科学地预判工人产前效率,以提高生产线的平衡率。首先,收集了某工厂13个订单的526个生产数据并通过分位数划分法对效率进行等级划分。其次,基于生产数据的特征,在员工生产效率预测任务中选择了随机森林集成学习模型,并与其它8个模型进行了综合比较。最后,通过递归式特征消除法,从15个初始特征中筛选出实现模型最大预测性能的最优特征组以优化模型。优化后结果显示,随机森林模型展现出优异的预测性能,在回归任务中,验证集R2值为0.836,而均方根误差值为0.116;在分类任务中,其验证集平衡F分数值为0.823。研究结果表明,使用随机森林模型可以实现产前工人效率的有效预测,预测结果可避免管理者在调度时做出错误决策,同时为生产线的优化和柔性调度提供参考。

关键词: 服装生产数据, 机器学习, 产前效率预测, 递归式特征消除, 柔性调度

Abstract:

Objective The significant impact of variations in employee productivity on the balance of apparel production lines has prompted the need for a solution to address the shortfall in achieving targeted productivity levels under manually scheduled operations lacking historical data analysis support. This research aims to utilize machine learning models to predict actual employee efficiency, providing management with valuable insights for goal setting and decision-making to enhance production profitability and prevent erroneous decisions to some extent.

Method In order to achieve efficiency prediction, this research conducted on-site surveys at factory A, gathering 526 historical production records from 13 orders. Through feature engineering, 15 initial prediction datasets were constructed, and efficiency levels were categorized using quantile division. Subsequently, considering the production data characteristics, RandomForest regression and classification models were selected for efficiency prediction. In order to validate the predictive performance of the model, it was compared with eight other models. Pearson and Spearman correlation coefficient analyses were performed to investigate the impact of variables on the model predictions. Finally, recursive feature elimination was employed to optimize the model by selecting the optimal feature subset from the initial feature set for maximum predictive performance.

Results Using a random split function, 20% of the prediction dataset was set aside for validation, while the remaining 80% was divided into training and testing sets for ten-fold cross-validation. R2 and RMSE were chosen as regression metrics, and F1 score was selected as the classification metric. The RandomForest regression model demonstrated the optimal predictive performance, showing the smallest range of fit and root mean square error in ten-fold cross-validation, with a fitting goodness value of 0.826 and an RMSE value of 0.126. In the classification task, the random forest model exhibited higher predictive performance compared to most models, with a balanced F1 score of 0.809 in the validation set, slightly lower than the gradient boosting classification model. Prior to model optimization, correlation coefficient and feature importance analyses revealed the crucial role of the auxiliary variable "annual efficiency" in predictions. Based on variable analysis, recursive feature elimination was employed to select the optimal feature parameter set for both the RandomForest regression and classification models. In the regression task, the RandomForest model achieved the optimal parameter combination with eight features, yielding a validation set R2 value of 0.836. In the classification task, the growth curve of the random forest model's predictive performance was relatively gradual, using nine features to form the optimal parameter combination, resulting in a validation F1 score of 0.823. In the optimization results, setting the threshold for the difference between RandomForestRegressor predictions and actual results to 30% identified only three outliers, accounting for 3.16% of the data. For the RandomForestClassifier model, the classification results indicated a very low recall rate for sample 3, contributing to the relatively lower F1 score.

Conclusion Through comparative experiments on predictive performance, the RandomForest model was selected as the optimal optimization model. Recursive feature elimination was chosen for model optimization based on the analysis of variable impacts on efficiency prediction. The results demonstrate that machine learning can accurately predict employee efficiency. Due to limitations imposed by the experimental factory, parameter collection was restricted. Future efficiency prediction research could consider adding more feature parameters to enhance model generalization. Additionally, considering the influence of time series, recurrent neural networks (RNNs) could be employed for modeling production efficiency prediction. In the future, we will continue to optimize this predictive model and apply it to the scheduling and arrangement of actual apparel assembly line workers.

Key words: garment production data, machine learning, prenatal efficiency, recursive feature elimination, flexible scheduling

中图分类号: 

  • TS941.19

图1

初始特征参数的选择"

表1

技能等级划分"

技能等级 技能水平
0 可完成不需要思考的基础工序
0.5 可完成一些学习时间较短的简单工序
2 可完成一些普通的执手动作少的较简单工序
3 可完成一些学习时间较长的较难的工序
4 可完成学习时间长、执手动作多的高难度工序

表2

工序等级划分"

工序等级 划分标准
1 中烫;打边、切修;简单车缝工序;易做的工序
2 中烫;合缝;普通钩翻工具;普通压明线;拉滚条;落、钉子类;专机工序
3 贴袋;高难勾反类;压线(难度大);锁里布;难度大一点的工序
4 上/夹;剪口要标准、准确度高;暗线贴袋;压线(高难工序)

表3

面料车缝难度等级"

面料等级 面料种类
1 棉混纺弹力面料
2 毛弹细斜纹面料
3 重磅蚕丝绉面料;羊毛棉灯芯绒针织面料
4 丝麻斜纹;高密斜纹布;砂洗电力纺面料

表4

模型对应名称"

回归模型
编号
回归模型
中文名称
分类模型
编号
分类模型
中文名称
1 岭回归模型 10 极端随机数分类模型
2 极端随机树回归模型 11 决策树分类模型
3 决策树回归模型 12 高斯贝叶斯分类模型
4 K近邻回归模型 13 K近邻分类模型
5 袋装回归模型 14 支持向量机
6 随机森林回归模型 15 袋装分类模型
7 自适应增强回归模型 16 随机森林分类模型
8 梯度提升回归模型 17 自适应增强分类模型
9 极端梯度提升回归模型 18 梯度提升分类模型

图2

回归模型的性能比较"

图3

9种回归模型F1值比较"

图4

随机森林分类与回归模型特征重要性占比排序"

图5

效率与特征参数的相关性系数"

图6

随机森林回归和分类模型递归特征消除过程"

表5

最优特征组选择结果"

模型名称 最优
特征组
最优
特征数
最优特征组
评估指标
初始特征组
评估指标
随机森林回归模型 工序等级、年均效率、面料车缝难度等级、款式类型、其它简单工序数、实际出勤时间、中烫工序数、批量系数 8 拟合优度值为0.836 拟合优度值为0.815
随机森林分类模型 工序等级、年均效率、面料车缝难度等级、款式类型、其它简单工序数、实际出勤时间、中烫工序数、批量系数、出勤人数 9 平衡F
数值为
0.823
平衡F
数值为
0.802

图7

随机森林回归模型的预测结果"

图8

随机森林分类模型混淆矩阵"

[1] CAO H Q, JI X F. Prediction of garment production cycle time based on a neural network[J]. Fibres & Textiles in Eastern Europe, 2021, 29(1): 8-12.
[2] KUMAR D V, MOHAN G M, MOHANASUNDARAM K M. Design & implementation of the production line in garment industry[J]. Industria Textila, 2022, 73(6): 687-692.
[3] 闫亦农, 刘立枝, 崔慧荣. 直线递进式服装吊挂生产流水线优化设计[J]. 丝绸, 2018, 55(11): 67-72.
YAN Yinong, LIU Lizhi, CUI Huirong. Optimized design of linear progressive hanging production line for garment[J]. Journal of Silk, 2018, 55(11): 67-72.
[4] 宋莹. 基于层次分析法的服装流水线影响因素等级评价[J]. 毛纺科技, 2020, 48(3): 61-64.
SONG Ying. Evaluation of influencing factors level of garment line based on analytic hierarchy process[J]. Wool Textile Journal, 2020, 48(3): 61-64.
[5] 荀培莉, 杜劲松, 李津, 等. 服装流水线人员与生产岗位契合度模型[J]. 东华大学学报(自然科学版), 2022, 48(5): 108-114,122.
XUN Peili, DU Jinsong, LI Jin, et al. A model of matching degree between the personnel and production post in garment assembly line[J]. Journal of Donghua University(Natural Science), 2022, 48(5): 108-114,122.
[6] CHOURABI Z, BABAY A, KHEDHER F, et al. A new objective function for the assembly line balancing optimization in terms of workers' global competence[J]. Industria Textila, 2020, 71(4): 398-407.
[7] XU H J, XU B J, YAN J. Balancing apparel assembly lines through adaptive ant colony optimization[J]. Textile Research Journal, 2019, 89(18): 3677-3691.
[8] 胡少营, 张龙琳, 张文斌. 采用熟练率的服装流水线节拍设计模型[J]. 纺织学报, 2015, 36(5): 133-138.
HU Shaoying, ZHANG Longlin, ZHANG Wenbin. Cycle time design model in garment assembly line based on skilled ratio[J]. Journal of Textile Research, 2015, 36(5): 133-138.
[9] BUAPETCH A, LAGAMPAN S, FAUCETT J, et al. The thai version of effort-reward imbalance question-naire (Thai ERIQ): a study of psychometric properties in garment workers[J]. Journal of Occupational Health, 2008, 50(6): 480-491.
[10] MITCHELL R J, BATES P. Measuring health-related productivity loss[J]. Population Health Management, 2011, 14(2): 93-98.
doi: 10.1089/pop.2010.0014 pmid: 21091370
[11] JAVED I, MD DAWAL S Z, NUKMAN Y, et al. Prediction of work productivity outcomes by identifying critical risk factors among garment industry workers[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(4): 2238-2249.
[12] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
doi: 10.13475/j.fzxb.20200100406
XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10): 144-149.
doi: 10.13475/j.fzxb.20200100406
[13] 孙影慧, 杜劲松. 服装单件流水线的Flexsim仿真[J]. 纺织学报, 2018, 39(6): 155-161,166.
SUN Yinghui, DU Jinsong. Simulation of one-piece flow garment assembly line based on Flexsim software[J]. Journal of Textile Research, 2018, 39(6): 155-161,166.
[14] 汪静平, 吴小丹, 马杜娟, 等. 基于机器学习的遥感反演:不确定性因素分析[J]. 遥感学报, 2023, 27(3): 790-801.
WANG Jingping, WU Xiaodan, MA Dujuan, et al. Remote sensing retrieval based on machine learning algorithm uncertainty analysis[J]. National Remote Sensing Bulletin, 2023, 27(3): 790-801.
[15] CHEN G Y H, CHEN P S, DANG J F, et al. Applying meta-heuristics algorithm to solve assembly line balancing problem with labor skill level in garment industry[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 1438-1450.
[16] 原丕业, 刘畅, 刘佳楠, 等. 基于学习遗忘疲劳恢复模型的员工生产率研究[J]. 佳木斯大学学报(自然科学版), 2020, 38(6): 112-117.
YUAN Piye, LIU Chang, LIU Jianan, et al. Research on employee productivity based on learning-forgetting-fatigue-recovery model[J]. Journal of Jiamusi University(Natural Science), 2020, 38(6): 112-117.
[17] 叶宁, 阎玉秀. 多品种小批量服装生产的工时定额制定方法[J]. 纺织学报, 2012, 33(6): 101-106.
YE Ning, YAN Yuxiu. Man-hour quota determination method for garment production of multi-variety in small batch[J]. Journal of Textile Research, 2012, 33(6): 101-106.
[18] LIU X H, TIAN M, SU Y, et al. Predicting the mechanical strength of fire protective fabrics after thermal aging using machine learning[J]. AATCC Journal of Research, 2021, 8(2): 46-50.
[19] DHASARADHAN K, JAICHANDRAN R. Performance analysis of machine learning algorithms in heart disease prediction[J]. Concurrent Engineering-Research and Applications, 2022(3): 335-343.
[20] 杨杏丽. 分类学习算法的性能度量指标综述[J]. 计算机科学, 2021, 48(8): 209-219.
doi: 10.11896/jsjkx.200900216
YANG Xingli. Survey for performance measure index of classification learning algorithm[J]. Computer Science, 2021, 48(8): 209-219.
doi: 10.11896/jsjkx.200900216
[21] 韦琦, 卫琦, 徐解刚, 等. 基于机器学习算法的ET0预测研究[J]. 节水灌溉, 2022, 327(11): 9-17.
WEI Qi, WEI Qi, XU Jiegang, et al. Research on ET0 prediction based on machine learning algorithm[J]. Water Saving Irrigation, 2022, 327(11): 9-17.
[22] 孙德亮, 陈丹璐, 密长林, 等. 基于随机森林-特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 地质力学学报, 2023, 29(2): 202-219.
SUN Deliang, CHEN Danlu, MI Changlin, et al. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model[J]. Journal of Geomechanics, 2023, 29(2): 202-219.
[23] 苏欣, 高晓旭, 赖复尧, 等. 基于机器学习的零件加工质量预测及优化[J]. 机械制造与自动化, 2022, 51(5): 136-139.
SU Xin, GAO Xiaoxu, LAI Fuyao, et al. Prediction and optimization of processing quality of machine part based on machine learning[J]. Machine Building & Automation, 2022, 51(5): 136-139.
[1] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
[2] 王梦蕾, 王静安, 高卫东. 计算机辅助配棉技术研究进展[J]. 纺织学报, 2023, 44(08): 225-233.
[3] 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236.
[4] 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205.
[5] 孙春红, 丁广太, 方坤. 基于稀疏字典学习的羊绒与羊毛分类[J]. 纺织学报, 2022, 43(04): 28-32.
[6] 杨景朝, 蒋秀明, 董九志, 陈云军, 梅宝龙. 基于机器学习的整体穿刺加压参数预测方法[J]. 纺织学报, 2019, 40(08): 157-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!