纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 202-208.doi: 10.13475/j.fzxb.20221005901

• 机械与设备 • 上一篇    下一篇

磁悬浮织针驱动方法和控制技术

熊涛1, 李成缘1, 桂顺1, 王意1, 张成俊1,2(), 左小艳1,2   

  1. 1.武汉纺织大学 机械工程与自动化学院, 湖北 武汉 430073
    2.湖北省数字化纺织装备重点实验室, 湖北 武汉 430073
  • 收稿日期:2023-01-28 修回日期:2024-01-30 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 张成俊(1979—),男,教授,博士。主要研究方向为针织装备设计与控制。E-mail:zchengj_wuse@163.com。
  • 作者简介:熊涛(1997—),男,硕士生。主要研究方向为针织装备设计。
  • 基金资助:
    国家自然科学基金资助项目(51875414);湖北省教育厅科学技术研究项目(D20211705);武汉市知识创新专项项目(2023010201010115);武汉市应用基础前沿项目(2022013988065209)

Drive method and control technology of magnetic levitation needle

XIONG Tao1, LI Chengyuan1, GUI Shun1, WANG Yi1, ZHANG Chengjun1,2(), ZUO Xiaoyan1,2   

  1. 1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, Hubei 430073, China
    2. Hubei Key Laboratory of Digital Textile Equipment, Wuhan, Hubei 430073, China
  • Received:2023-01-28 Revised:2024-01-30 Published:2024-05-15 Online:2024-05-31

摘要:

为完善磁悬浮针织横机的工艺流程,实现花型设计图案到织针编织动作的数据转换,首先根据混合磁悬浮针织横机系统的工作原理,设计了步进式磁悬浮织针的驱动方案;然后采用数学矩阵的方法,建立磁悬浮针织横机双色单面提花织物的意匠图模型,同时推导出双色单面提花织物的数据转换算法,最后将意匠图设计的花型数据转换成织针编织的驱动数据,并根据步进式磁悬浮织针的驱动方案定义织针编织动作对应的电流信号。在此基础上搭建织针驱动的实验平台进一步验证步进式驱动方案的可行性,并使用仿真软件验证意匠图转换算法的准确性。研究结果表明,步进式织针驱动方案可使织针逐步达到工艺编织高度,满足工艺设计要求;双色单面提花转换算法也能准确将意匠图的花型数据转换成织针驱动的编织数据,通过定义编织动作对应的线圈电流信号使设计的织物花型图案能转换成磁悬浮针织横机驱动的电流信号,达到织针驱动和编织工艺相结合的效果,简化了磁悬浮针织横机编织双色单面提花织物的工艺流程,为磁悬浮针织横机的工艺设计探索出一条可行路线。

关键词: 横机, 驱动方案, 意匠图转换算法, 花型设计图案数据转换, 磁悬浮织针

Abstract:

Objective In order to improve the process flow of magnetic levitation flat knitting machine, and to realize the transformation from pattern design to needle knitting action, this paper proposes a technology of magnetic levitation flat knitting machine. Compared with the conventional needle driving method, the magnetic levitation flat knitting machine uses a new weft knitting machine technology that alleviates the problems of noise, heat and needle breakage. The magnetic levitation flat knitting machine has a special driving structure, which requires a corresponding drive solution and process knitting flow.

Method Based on the working principle of the hybrid magnetic levitation flat knitting machine system and the special driving structure, a stepper type magnetic levitation needle drive solution was designed. A mathematical matrix method was adcpted to model the pattern grid of two-color single-layer jacquard fabric on a magnetic levitation knitting flat knitting machine. Finally, the experimental platform for needle driving was built to verify the feasibility of the stepper drive scheme, and the simulation software was adcpted to ensure the accuracy of the pattern grid conversion algorithm.

Results The magnetic levitation flat knitting machine is a weft knitting machine that applies magnetic levitation technology to the knitting driving structure. According to the stepper magnetic needle driving scheme, eight coils in the head work together to complete the knitting motion of the needle. Each coil has a different current signal to raise the needle to a different knitting height. Mathematical form is considered to define the pattern grid of the two-color single-jersey jacquard fabric, then the mathematical matrix method is adopted to convert the pattern of the pattern grid into the form of data matrix, and the data conversion algorithm is obtained which can transform the flower matrix into the braided matrix. According to the weaving method of two-color single-jersey jacquard fabric, the design pattern of pattern grid is converted into weaving action data by mathematical algorithm. The current signal corresponding to the knitting action of the needle is defined according to the drive scheme of the stepper maglev needle, which allows the design of a two-color single-jersey jacquard fabric pattern to be converted into a current signal for knitting on a magnetic levitation flat knitting machine. It was determined that a stepper drive solution would allow the needle to gradually reach the process knitting height through the construction of the experimental platform for the needle drive. The simulation software is adopted to build the design interface of the grid pattern and the data conversion algorithm is adopted to gradually convert the grid pattern into the form of data. The simulation software shows that the two-color single-jersey jacquard conversion algorithm accurately converts the pattern data of the pattern grid into needle-driven weave data.

Conclusion the proposed stepping magnetic levitation needle drive scheme and pattern grid data conversion algorithm completes the knitting process of the magnetic levitation flat knitting machine, and different current signals will be adopted to represent the different knitting motions of the needles. The algorithm converts the two-color single-jersey jacquard design pattern into weave data, and each weave data represents the weave action of each needle. At the same time, it completes the two-color single-jersey jacquard fabric process from grid pattern design to magnetic levitation flat knitting machine, which can allow the magnetic levitation flat knitting machine to weave two-color single-jersey jacquard fabrics with greater ease. Therefore, the feasible route is explored for the process design of magnetic levitation flat knitting machine, which simplifies the process flow of two-color single-jersey jacquard fabric by magnetic levitation flat knitting machine.

Key words: flat knitting machine, needle drive scheme, artisan diagram conversion algorithm, patten design data conversion, magnetic levitation needle

中图分类号: 

  • TP311

图1

磁悬浮织针横机驱动结构图"

图2

磁悬浮针织横机运行动作示意图"

图3

织针轨迹图"

表1

织针步进电流参数表"

织针工步 线圈驱动电流/mA
0 0
1 280
2 390
3 440
4 560
5 880
6 1 080
7 1 250
8 -1 250

图4

双色单面提花织物的花型意匠图"

表2

编织动作的电流信号表"

编织动作 数字表示 线圈电流信号
浮线 1 (0,0,0,0,0,0,0,0)
集圈 2 (0,0,0,1,2,3,4,8)
接圈 3 (0,0,0,0,0,1,2,8)
成圈 4 (0,1,2,3,4,5,6,8)
移圈 5 (1,3,4,5,6,7,7,8)

图5

矩阵转换算法流程图"

图6

双色单面提花织物的数学模型"

图7

磁悬浮针织横机系统实验平台"

图8

织针驱动效果图"

图9

花型意匠图设计界面"

[1] 蒋高明, 周濛濛, 郑宝平, 等. 绿色低碳针织技术研究进展[J]. 纺织学报, 2022, 43(1): 67-73.
JIANG Gaoming, ZHOU Mengmeng, ZHENG Baoping, et al. Research progress of green and low-carbon knitting technology[J]. Journal of Textile Research, 2022, 43(1): 67-73.
[2] 郭超, 磁悬浮式驱动织针力学模型研究及关键针筒零件有限元分析[D]. 武汉: 武汉纺织大学, 2014: 3-31.
GUO Chao. Mechanical modeling of magnetically levitated driven knitting needles and finite element analysis of key needle cylinder parts[D]. Wuhan: Wuhan Textile University, 2014: 3-31.
[3] 张成俊, 游良风, 左小艳, 等. 电脑横机织针的磁驱动设计与建模[J]. 纺织学报, 2019, 40(9): 180-185.
ZHANG Chengjun1, YOU Liangfeng, ZUO Xiaoyan, et al. Magnetic driving design and modeling for knitting needles of computerized flat knitting machine[J]. Journal of Textile Research, 2019, 40(9): 180-185.
[4] 吴晓光, 孔令学, 朱里, 等. 磁悬浮式针织提花驱动方式理论研究与探讨[J]. 纺织学报, 2012, 33(10): 128-133.
WU Xiaoguang, KONG Lingxue, ZHU Li, et al. Theoretical research and discussion on the drive mode of magnetic levitation knitting jacquard[J]. Journal of Textile Research, 2012, 33(10): 128-133.
[5] 李冬冬, 张成俊, 左小艳, 等. 混合磁悬浮织针驱动的永磁织针磁场分布规律[J]. 纺织学报, 2020, 41(9): 136-142.
LI Dongdong, ZHANG Chengjun, ZUO Xiaoyan, et al. Magnetic field distribution law of permanent magnetic needle driven by hybrid magnetic levitation needle[J]. Journal of Textile Research, 2020, 41(9):136-142.
[6] 万道玉, 吴晓光, 张弛, 等. 磁悬浮式驱动织针电磁力研究及线圈轮廓优化[J]. 针织工业, 2017(8): 9-12.
WAN Daoyu, WU Xiaoguang, ZHANG Chi, et al. Study on electromagnetic force of magnetically levitated driven knitting needles and optimization of coil profile[J]. Knitting Industries, 2017(8): 9-12.
[7] 游良风. 磁悬浮织针大行程驱动研究[D]. 武汉: 武汉纺织大学,2020: 7-21.
YOU Liangfeng. Research on large stroke drive of magnetic levitation knitting needle[D]. Wuhan: Wuhan Textile University, 2020: 7-21.
[8] 戴健雄, 张成俊, 李冬冬, 等. 基于STM32的磁悬浮织针控制设计与仿真研究[J]. 针织工业, 2021 (5): 1-5.
DAI Jianxiong, ZHANG Chengjun, LI Dongdong, et al. STM32 based design and simulation of magnetic levitation needle control system[J]. Knitting Industries, 2021 (5): 1-5.
[9] 徐巧, 丛洪莲, 张爱军, 等. 纬编针织物CAD设计模型的建立与实现[J]. 纺织学报, 2014, 35(3): 136-140,144.
XU Qiao, CONG Honglian, ZHANG Aijun, et al. Establishment and implementation of weft-knitted fabric's design model in CAD system[J]. Journal of Textile Research, 2014, 35(3): 136-140,144.
[10] INDRIE L, GARCÍA P D, KAZLACHEVA Z, et al. The use of CAD/CAM for textile designs and fabrics[J]. Applied Researches in Technics, Technologies and Education, 2019, 7(1): 24-28.
[11] 张宁起. 全成形针织物管状编织工艺分析及产品开发[J]. 上海纺织科技, 2023, 51(10): 57-59.
ZHANG Ningqi. Tubular knitting process analysis and product development of whole garment knitted fabric[J]. Shanghai Textile Science & Technology, 2023, 51(10):57-59.
[12] XIONG T, PENG Y, ZUO X Y, et al. Magnetic field analysis and optimization of the gauge of hybrid maglev needles[J]. Applied Sciences, 2023, 13(3):1257-1269.
[13] 梁佳璐, 丛洪莲, 张爱军. 纬编两面提花针织物的工艺设计模型[J]. 纺织学报, 2020, 41(1): 69-74.
LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric[J]. Journal of Textile Research, 2020, 41(1): 69-74.
[1] 李玉贤, 丛洪莲, 吴光军. 针织立体构型产品的全成形工艺设计[J]. 纺织学报, 2023, 44(05): 132-138.
[2] 冯英杰, 蒋高明, 吴光军, 金帅. 全成形运动护膝结构设计及成形方法[J]. 纺织学报, 2023, 44(01): 112-118.
[3] 金贵阳, 陈罡, 孙平范. 基于OPC统一架构的毛衫生产车间信息模型及其应用[J]. 纺织学报, 2022, 43(03): 185-192.
[4] 李冬冬, 张成俊, 左小艳, 张弛, 朱里, 刘雅昆. 密绕线圈阵列结构对悬浮织针驱动性能的影响[J]. 纺织学报, 2021, 42(09): 156-162.
[5] 赵博宇, 梁鑫花, 丛洪莲. 电脑横机编织三维全成形口罩结构建模与工艺实践[J]. 纺织学报, 2020, 41(12): 59-65.
[6] 李冬冬, 张成俊, 左小艳, 张弛, 李红军, 周向阳. 混合磁悬浮织针驱动的永磁织针磁场分布规律[J]. 纺织学报, 2020, 41(09): 136-142.
[7] 刘博, 丛洪莲. 全成形西服横向编织技术的工艺模型与实现[J]. 纺织学报, 2020, 41(07): 53-58.
[8] 刘博, 丛洪莲. 四针床全成形休闲西服的工艺设计与成形原理[J]. 纺织学报, 2020, 41(04): 129-134.
[9] 王盼, 吴志明. 全成形毛衫横向编织方式及其成形工艺[J]. 纺织学报, 2019, 40(10): 73-78.
[10] 张成俊, 游良风, 左小艳, 张弛, 朱里. 电脑横机织针的磁驱动设计与建模[J]. 纺织学报, 2019, 40(09): 180-185.
[11] 王盼, 吴志明. 全成形毛衫局部编织原理及其应用[J]. 纺织学报, 2019, 40(05): 41-46.
[12] 邱庄岩 花芬 吴志明. 四针床全成形编织工艺及其应用[J]. 纺织学报, 2018, 39(08): 63-70.
[13] 邱庄岩 吴志明 蒋高明. 全成形毛衫肩袖成形工艺[J]. 纺织学报, 2018, 39(03): 56-60.
[14] 彭佳佳 蒋高明 丛洪莲 王敏. 全成形毛衫的结构与编织原理[J]. 纺织学报, 2017, 38(11): 48-55.
[15] 王敏 丛洪莲 蒋高明 彭佳佳. 四针床电脑横机的全成形工艺[J]. 纺织学报, 2017, 38(04): 61-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!