纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 209-217.doi: 10.13475/j.fzxb.20230505401

• 机械与设备 • 上一篇    下一篇

面料堆垛非接触式分层吸附工艺模型与系统构建

马梓鸿, 陈慧敏, 丁孟孟, 岳晓丽()   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2023-05-19 修回日期:2024-02-05 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 岳晓丽(1968—),女,教授,博士。研究方向为新型纺织机械与光机电一体化技术。E-mail: xlyue@dhu.edu.cn。
  • 作者简介:马梓鸿(1998—),男,硕士生。主要研究方向为协作机器人及其应用。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309700);中央高校基本科研业务费专项资金资助项目(223202100062)

Model and system construction of non-contact fabric stack separation

MA Zihong, CHEN Huimin, DING Mengmeng, YUE Xiaoli()   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2023-05-19 Revised:2024-02-05 Published:2024-05-15 Online:2024-05-31

摘要:

针对因面料柔软、透气导致面料堆垛难以自动分层抓取、移送的问题,探讨了利用非接触式吸附技术进行面料堆垛分层的可行性。考虑面料悬垂特性、堆垛内气体流动压力损失和层间静电力等因素,构建了伯努利非接触式堆垛分层吸附力理论模型。为验证该模型的有效性和非接触式吸附系统的可靠性,进行了吸附力测试以及面料堆垛分层吸附试验。结果表明,所构建的吸附力理论模型与通用模型的结果偏差为26.17%;模型计算所得吸附力变化趋势与试验结果一致,数值与试验结果相差9.4%;利用模型计算所得工艺参数对面料堆垛进行分层吸附的成功率可达93%,所构建的吸附工艺模型与系统的有效性和可靠性较高。

关键词: 服装生产, 面料堆垛, 非接触式吸附技术, 吸附力, 堆垛分层

Abstract:

Objective In the process of garment production, fabrics need to go through the processes of cutting, sewing, and ironing, and the garment production heavily relies on the manual transfer of fabric cuts, which is time-consuming and labor-intensive. Due to the lightweight, softness, permeability and other characteristics of the fabrics, the automatic fabric stack separation becomes a recognized technical problem, which restricts the automatic transformation and upgrading of the material flow link in the garment production line.

Method Aimed at fabric stack separation, the permeability, drape deformation, and electrostatic properties of the fabrics in the stack were characterized using theories of porous media, elastic thin plate bending deformation, and Coulomb's law. Subsequently, a mathematical model for fabric stack separation was established. In ordert validate the reliability and effectiveness of this model, an experimental platform for fabric stack separation was constructed.

Results The experimental platform for fabrics stack separation was constructed by considering the Bernoulli suction cup suction force control system and the Bernoulli suction cup posture control system. This study analyzed the process of layered suction on the fabrics stack using Bernoulli suction cup and identified the main influencing factors, which include 1) atmospheric pressure loss caused by fabric permeability, 2) the change in spacing height h caused by fabric drape deformation, and 3) interlayer electrostatic forces for fabrics that are prone to static electricity, this is something that was not taken into account by the general model constructed by previous researchers. Based on these, a pressure field calculation model that is more in line with the non-contact suction of preamthable soft materials such as fabrics, as well as a suction force model were constructed. The ctrape deformation analysis models for grey fabric and denim under the non-contact suction based on the elastic thin plate theory were found to better express their respective ctrape deformation. Comparison between the measured and theoretical values of deflection suggested a 4.9% error, and the deviation between the suction theoretical model and the general model is 26.17%. The suction process parameters of Bernoulli suction cups mainly included inlet flow rate Q and spacing height h. When the spacing height h was kept constant, the suction force demonstrated an increase with the increase of inlet flow rate Q. On the other hand, when the intake flow rate Q remained constant, the suction force was increased with the increase of spacing height h. The success rate of stack separation using the suction model calculation results reach as high as 93%.

Conclusion The deviation between the suction theoretical model and the general model is 26.17%, which compensates for the deficiency of the general model's suction capacity and can provide more accurate theoretical guidance for the process parameters required for fabric stack separation. The proposed suction model can accurately predict the changes in suction force, and the calculated results of the model differ by 9.4% from the experimental results. The success rate of stack separation using the suction model calculation results can reach 93%, and the proposed suction model and system have high effectiveness and reliability.

Key words: garment prodaction, fabric stack, non-contact suction technology, suction force, fabric stack separation

中图分类号: 

  • TS103.7

图1

伯努利吸盘吸附原理示意图"

图2

面料吸附系统试验平台"

图3

伯努利吸盘吸附力调控系统示意图"

图4

分层吸附工艺模型计算流程"

图5

刚/柔性体受非接触吸附时的悬垂形态"

图6

吸附透气面料时气流速度矢量图"

图7

面料堆垛多孔介质模型"

图8

面料层间静电力分析模型"

表1

面料试样结构参数"

名称 组织 面密度/
(g·m-2)
密度/
(根·(10 cm)-1)
直径/
mm
厚度/
mm
经密 纬密 经纱 纬纱
牛仔布 斜纹 420 284 146 0.33 0.42 0.7
白坯布 平纹 150 358 230 0.25 0.30 0.2

表2

面料堆垛分层吸附的参数组合及对应吸附力"

试验
编号
堆垛
种类
理论进气流量
Q/(L·min-1)
初始间隙
h/mm
理论吸
附力Fa/N
1 牛仔布 108.38 50 0.16
2 129.87 60
3 152.02 70
4 白坯布 64.09 50 0.05
5 73.21 60
6 84.93 70

图9

白坯布和牛仔布受非接触式吸附时的悬垂形态"

图10

白坯布和牛仔布的挠曲面函数图像"

图11

样本点分布示意图"

表3

样本点挠度的实测值和理论结果比较"

面料试样
种类
样本点
编号
实测挠度/
mm
理论挠度/
mm
偏差/%
白坯布 1 8.30 7.33 13.19
2 17.57 15.49 13.45
3 24.36 23.64 3.02
4 33.96 31.80 6.80
5 40.01 39.96 0.13
6 1.44 1.25 15.18
7 1.04 1.09 4.24
8 10.40 8.43 23.41
9 24.07 22.81 5.55
牛仔布 1 0.06 0.07 17.84
2 0.82 0.92 11.21
3 10.36 9.75 6.26
4 28.97 28.99 0.08
5 61.35 62.25 1.44
6 0.38 0.38 2.10
7 5.20 3.19 24.11
8 15.38 13.21 16.41
9 31.26 32.07 2.55

表4

通用吸附力模型与本文所构建模型计算结果对比"

h/mm Q/
(L·min-1)
Fa/N 偏差/%
通用模型
(式(2))
本文所构建
模型
20 10 0.008 4 0.006 3 25.00
30 0.075 2 0.056 5 24.87
50 0.208 8 0.145 5 30.32
70 0.409 3 0.311 8 23.82
30 10 0.003 7 0.002 7 27.03
30 0.033 4 0.025 2 24.64
50 0.092 8 0.068 8 25.85
70 0.181 9 0.133 1 26.83
40 10 0.002 1 0.001 5 28.57
30 0.018 8 0.013 6 27.66
50 0.052 2 0.040 1 23.18
70 0.102 3 0.075 4 26.30

表5

面料堆垛分层吸附试验结果"

试验编号 第1层 第4层 第7层 第2、3、5、6、
8、9、10层
成功率/%
1 100
2 90
3 100
4 100
5 80
6 90

图12

面料堆垛吸附力测试结果"

图13

面料堆垛分层吸附结果"

[1] 王芳. 智能制造在我国商务男装定制中的应用现状研究[D]. 深圳: 深圳大学, 2019:7-9.
WANG Fang. Research on the application status of intelligent manufacturing in mass customization in business men's wear in China[D]. Shenzhen: Shenzhen University, 2019:7-9.
[2] 刘立东, 李新荣, 刘汉邦, 等. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(3):161-168.
LIU Lidong, LI Xinrong, LIU Hanbang, et al. Electrostatic adsorption model based on the characteristics of weft knitted fabrics[J]. Journal of Textile Research, 2021, 42(3):161-168.
[3] MONKMAN G J, TAYLOR P M, FARNWORTH G J. Principles of electroadhesion in clothing robotics[J]. International Journal of Clothing Science and Technology, 1989, 1(3):14-20.
[4] KOLLURU R, VALAVANIS K P, HEBERT T M. Modeling, analysis, and performance evaluation of a robotic gripper system for limp material handling[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1998, 28(3):480-486.
[5] MONKMAN G J, SHIMMIN C. Permatack adhesives for robot grippers[J]. Assembly Automation, 1991, 11(4):17-19.
[6] STEPHAN J, SELIGER G. Handling with ice-the cryo-gripper, a new approach[J]. Assembly Automation, 1999, 19(4):332-337.
[7] HIROYUKI Y, SOLVI A, KIMITOSHI Y. Unfolding of a rectangular cloth from unarranged starting shapes by a dual-armed robot with a mechanism for managing recognition error and uncertainty[J]. Advanced Robotics, 2017, 31(10):544-556.
[8] FANTONI G, SANTOCHI M, DINI G, et al. Grasping devices and methods in automated production processes[J]. CIRP Annals, 2014, 63(2):679-701.
[9] TAYLOR P M, TAYLOR G E. Sensory robotic assembly of apparel at Hull University[J]. Journal of Intelligent Robot System, 1992, 6:81-94.
[10] LI X, KAGAWA T. Theoretical and experimental study of factors affecting the suction force of a bernoulli gripper[J]. Journal of Engineering Mechanics, 2014. DOI:10.1061/(ASCE)EM.1943-7889.0000774.
[11] BRUN X, MELKOTE S N. Effect of substrate flexibility on the pressure distribution and lifting force generated by a Bernoulli gripper[J]. Journal of Manufacturing Science and Engineering, 2012. DOI:10.1115/1.4007186.
[12] LIU D, LIANG W, ZHU H, et al. Development of a distributed Bernoulli gripper for ultra-thin wafer handling[C]. IEEE International Conference on Advanced Intelligent Mechatronics(AIM), Munich, Germany, 2017. DOI:10.1109/AIM.2017.8014028.
[13] RAWAL B R, PARE V, TRIPATHI K. Development of noncontact end effector for handling of bakery products[J]. The International Journal of Advanced Manufacturing Technology, 2007, 38(5/6):524-528.
[14] DAVIS S, GRAY J O, CALDWELL D G. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24(2):249-257.
[15] ERTÜRK Ş, SAMTA Ş G. Design of grippers for laparoscopic surgery and optimization of experimental parameters for maximum tissue weight holding capa-city[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2019, 67(6):1125-1132.
[16] ERTÜRK Ş, ERZINCANLI F. Design and development of a non-contact robotic gripper for tissue manipulation in minimally invasive surgery[J]. Acta Bio-medica: Atenei Parmensis, 2020. DOI: 10.23750/abm.v91i3.8129.
[17] SAVKIV V, MYKHAILYSHYN R, MARUSCHAK P, et al. Gripping devices of industrial robots for manipulating offset dish antenna billets and controlling their shape[J]. Transport, 2021, 36(1):63-74.
[18] STÜHM K, TORNOW A, SCHMITT J, et al. A novel gripper for battery electrodes based on the Bernoulli-principle with integrated exhaust air compensation[J]. Procedia CIRP, 2014, 23:161-164.
[19] OZCELIK B, ERZINCANLI F. A non-contact end-effector for the handling of garments[J]. Robotica, 2002, 20(4):447-450.
[20] OZCELIK B, ERZINCANLI F. Examination of the movement of a woven fabric in the horizontal direction using a non-contact end-effector[J]. The International Journal of Advanced Manufacturing Technology, 2004, 25(5/6):527-532.
[21] 何帆, 孟婥, 张豪, 等. 基于伯努利吸盘吸附经编鞋面稳态过程的研究[J]. 东华大学学报(自然科学版), 2022, 48(1):79-84.
HE Fan, MENG Zhuo, ZHANG Hao, et al. Study on the steady-state of grasping warp knit uppers based on Bernoulli gripper[J]. Journal of Donghua University (Natural Science Edition), 2022, 48(1):79-84.
[22] FEYNMAN C. Modeling the appearance of cloth[D]. Britain: Cambridge, Massachusetts Inst of Technology, 1986:6-14.
[23] 程银水, 朱锜. 正交各向异性矩形薄板弯曲问题解析解的一般格式[J]. 北京建筑工程学院学报, 1991(1): 9-18.
CHEN Yinshui, ZHU Qi. General format for analytical solutions of bending problems of orthotropic rectangular thin plates[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 1991(1): 9-18.
[24] 杨鑫. 面料非接触拾取数值模拟研究[D]. 上海: 东华大学, 2023:28-33.
YANG Xin. Numerical simulation study on non-contact pickup of fabric[D]. Shanghai: Donghua University, 2023:28-33.
[25] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 2(48): 89-94.
[26] 邱茂伟, 王府梅. 机织物透气性能的预测研究[J]. 纺织学报, 2005, 26(4): 73-75.
QIU Maowei, WANG Fumei. Prediction of air permeability of woven fabrics[J]. Journal of Textile Research, 2005, 26(4):73-75.
[27] 张立奎. 矩形风管的当量直径[J]. 环境工程, 2014, 32(S1):975-978.
ZHANG Likui. Rectangular duct-s equivalent diameter[J]. Environmental Engineering, 2014, 32(S1):975-978.
[1] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[2] 鞠宇, 王朝晖, 李博一, 叶勤文. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(05): 183-192.
[3] 郑路, 颜伟雄, 胡觉亮, 韩曙光. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(04): 140-146.
[4] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[5] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[6] 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124.
[7] 胡少营 张龙琳 张文斌. 采用熟练率的服装流水线节拍设计模型[J]. 纺织学报, 2015, 36(05): 133-138.
[8] 朱秀丽;杭小刚;吴春胜. 服装生产台产量的学习曲线及应用[J]. 纺织学报, 2007, 28(7): 125-128.
[9] 李敏;石旭光. 基于时间竞争的服装生产工艺与组织方式[J]. 纺织学报, 2007, 28(6): 123-127.
[10] 李国富;叶飞帆;徐雪鸿. 服装企业集群敏捷客户化制造研究[J]. 纺织学报, 2006, 27(6): 116-120.
[11] 李克兢;崔世忠. 模块化服装快速生产设计系统的开发[J]. 纺织学报, 2006, 27(1): 50-53.
[12] 李重;胡觉亮;吴庆标. 服装生产流水线的计算机仿真[J]. 纺织学报, 2005, 26(4): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!