纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 218-227.doi: 10.13475/j.fzxb.20221203002

• 综合述评 • 上一篇    下一篇

静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展

冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫(), 张建伟   

  1. 沈阳化工大学 机械与动力工程学院, 辽宁 沈阳 110142
  • 收稿日期:2023-01-09 修回日期:2023-06-29 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 董鑫(1990—),女,副教授,博士。主要研究方向为环境流体多相流传递理论与技术装备。E-mail:dongxin1106@syuct.edu.cn
  • 作者简介:冯颖(1975—),女,教授,博士。主要研究方向为非均相分离技术及设备。
  • 基金资助:
    国家自然科学基金项目(21406142);辽宁省自然科学基金项目(2020-MS-230);辽宁省教育厅科学研究项目(LJ2020036)

Review on preparation of electrospun chitosan-based nanofibers and their application in water treatment

FENG Ying, YU Hanzhe, ZHANG Hong, LI Kexin, MA Biao, DONG Xin(), ZHANG Jianwei   

  1. College of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
  • Received:2023-01-09 Revised:2023-06-29 Published:2024-05-15 Online:2024-05-31

摘要:

为提高壳聚糖的可纺性,改善壳聚糖基纳米纤维的物理形态和力学性能,对国内外利用静电纺丝技术制备壳聚糖基纳米纤维的相关研究进行了综述。介绍了壳聚糖静电纺丝液的配制要求以及不同纺丝参数对纤维形态的影响;在此基础上,详细综述了壳聚糖化学改性纳米纤维和壳聚糖共混改性纳米纤维的研究进展;最后,对应用壳聚糖基纳米纤维处理废水中重金属离子、染料和其它污染物的研究现状进行总结。研究发现:不同纺丝参数最终均是通过影响射流拉伸的难易程度来改变纤维形态,且通过化学改性和共混改性的方法不仅可提高壳聚糖的可纺性,还可增强壳聚糖基纳米纤维的耐酸性、热稳定性、抗菌性和吸附性;同时指出探寻新的溶剂、共混剂和功能材料以及与选择性分离技术结合来增强对水中污染物的吸附能力是壳聚糖基纳米纤维的未来发展趋势。

关键词: 壳聚糖基纳米纤维, 静电纺技术, 重金属, 染料, 吸附剂, 废水处理

Abstract:

Significance Chitosan is a natural polymeric alkaline polysaccharide derived from a wide range of sources, and its molecular chain is rich of reactive groups, which can be used as adsorbent in the field of water treatment. However, conventional chitosan adsorbents have the disadvantages of small specific surface area, poor stability and difficulties in secondary recovery, resulting in low adsorption rate and poor economic efficiency, which seriously limits the industrial applications. Chitosan nanofibers are functional biomass regeneration fibers with large specific surface area, high porosity, flexible surface function and certain strength prepared by a series of spinning methods with chitosan as the main component, and fibrillation of chitosan can significantly eliminate the defects in the conventional chitosan adsorbents. Fibers can be formed by various techniques such as electrostatic spinning, wet spinning and chemical vapor deposition spinning, among which electrostatic spinning is the most common method for preparing chitosan-based nanofibers with uniform morphology. This paper presents a review of domestic and international studies on the preparation of chitosan-based nanofibers using electrostatic spinning technology, aiming to provide guidance for improving the spinnability of chitosan and the physical morphology and mechanical properties of chitosan-based nanofibers.

Progress In order to enhance the spinnability of chitosan and improve the physical morphology and chemical properties of chitosan-based nanofibers, researchers have carried out a lot of studies in the aspect of preparing chitosan nanofibers using electrostatic spinning technology, and found that the parameters of spinning liquid and process parameters of electrostatic spinning device are the important factors determining the properties of nanofibers. First of all, only the spinning solution with good viscosity and conductivity can make chitosan nanofibers with uniform diameter and good mechanical properties by electrostatic spinning technology. In recent years, researchers have prepared ideal spinning solution by modifying chitosan through cross-linking, grafting and derivatization, but this still falls short of the standard for industrial application. Researchers have used natural/synthetic polymers to further enhance the viscosity and conductivity of the spinning solution, but synthetic polymers such as polylactic acid, polycaprolactone, polyurethane and other synthetic polymers have a certain degree of toxicity leading to the final production of fibers with a limited range of applications, while natural polymers such as cellulose, collagen and so on, have become a hotspot of the research on the preparation of excellent chitosan spinning solution in recent years because of their non-toxic and non-hazardous advantages. Secondly, in addition to the preparation of spinning solution with good viscosity and conductivity, suitable process parameters are also important prerequisites for the preparation of excellent chitosan nanofibers. For example, the appropriate voltage value in the electrostatic spinning process is an important guarantee to ensure that the fibers have good morphology and excellent performance, and it is found that the fiber diameter decreases with the increase of voltage, but the fiber diameter starts to increase when the voltage is higher than the critical range. Finally, this paper summarizes the effectiveness of chitosan-based nanofibers as adsorbents for the treatment of heavy metal ions such as Ni2+, Cu2+, Cr6+ and U6+ and dyes such as Congo Red, methylene blue and carmine in wastewater, and finds that the resulting fibers can be used for the simultaneous adsorption of a variety of heavy metal ions, anionic and cationic dyes as the spinning technology improves, and elucidates the repetitive regeneration properties of chitosan-based nanofibers in the adsorption of different pollutants.

Conclusion and Prospect Chitosan-based nanofiber is a new type of adsorbent material with the advantages of easy separation, large specific surface area and flexible surface function, which can effectively improve the economic efficiency and avoid secondary pollution, and it is of great significance to help the early realization of "double carbon". Chitosan fibrillation based on electrostatic spinning technology can be divided into two steps: preparing of spinning solution and spinning formation. The preparation of spinning solution by dissolving chitosan in acid is the first step to enable chitosan spinnable, and changes in parameters such as spinning solution, process and environment during spinning formation ultimately change fiber morphology by affecting the ease of jet stretching. In addition, modification methods such as cross-linking, graft copolymerization, derivatization and blending can not only improve the spinnability of chitosan, but also enhance the acid resistance, thermal stability, antibacterial properties and adsorption of chitosan-based nanofibers. In the co-blending spinning process, the electrostatic interaction between chitosan and natural/synthetic polymers and the entanglement resulting from the reaction of different groups can improve the spinnability of chitosan. The search for new green, non-toxic and post-treatment-free solvents in the preparation of spinning solution, the search for new natural/synthetic polymers as co-spinning agents for improving chitosan spinnability during spinning and forming, and the use of multi-template molecular imprinting technology to enhance the adsorption for contaminants are the future trends of chitosan-based nanofibers.

Key words: chitosan-based nanofiber, electrostatic spinning technology, heavy metal, dye, adsorbent, water treatment

中图分类号: 

  • TQ340.14

图1

静电纺丝装置"

表1

不同参数对纤维形态的影响"

影响因素 参数 纤维形态变化 作用机制 参考文献
工艺参数 电压 随着电压的增加纤维直径减小,但电压高于临界范围时,纤维直径开始增大 电压增大使射流携带更多电荷易于拉伸,但电压接近临界范围时导致射流流量增大,拉伸变得缓慢 [11]
接收距离 纤维直径随着接收距离增大而减小,有珠粒形成 接收距离增加导致射流伸长时间增加 [12]
流速 随着流速增大纤维直径增大 较高的流速使初始射流直径更大 [13]
纺丝液参数 浓度 随着浓度增加纤维直径增大 浓度增大导致射流伸长困难和拉伸缓慢 [14]
导电率 随着导电率增加纤维直径减小 射流中斥力增加,射流更易被拉伸 [15]
表面张力 随着表面张力下降纤维直径减小 表面张力减小导致射流容易拉长 [16]
环境参数 温度 随着温度降低纳米纤维直径减小 射流伸长缓慢 [17]
湿度 随着湿度降低纤维直径减小,纤维出现珠粒 射流拉伸时间延长 [18]

表2

壳聚糖的相关化学改性方法及其制备纤维的形态与功能"

改性方法 引入物质 优点 纤维形态及性能 参考文献
交联 3-氨基丙基三乙氧基硅烷 削弱了壳聚糖分子间/内氢键作用 纤维直径均匀且pH值为4和9时,对罗丹明B和亚甲基蓝的最大吸附量为86.43和82.37 mg/g [20]
接枝 水杨酸 壳聚糖本身性质得以保持的同时具备水杨酸的性质 接枝改性后所得壳聚糖纤维形态良好且对亚甲基蓝的吸附量比原壳聚糖纤维高4倍 [21]
季铵化 缩水甘油基三甲基氯化铵 壳聚糖吸附性得以保持的同时具备季铵盐的抗菌性 纤维直径均匀、水稳定性显著增强,且具有高抗菌活性 [22]
羧甲基化 亲水基团—CH2COOH 壳聚糖溶解性提高 纤维平均直径为(268±62) nm,可用作伤口敷料 [23]

表3

与壳聚糖共混纺丝的合成聚合物的种类及其纤维性能"

合成聚合物 纤维形态 材料性能 参考文献
聚氨酯 纤维平均直径在206.44~387.44 nm之间,无粘连 随着聚氨酯溶液浓度的增加,纳米纤维的平均直径增加,但均匀性降低 [27]
聚丙烯酸 纤维平均直径在0.18~0.35 μm之间 壳聚糖(CS)的脱乙酰化增加导致纺丝液的黏度降低,纤维直径减小 [28]
聚丙烯腈 纤维平均直径为235 nm,光滑无粘连 随着温度的升高,纤维膜的水通量增加,对金属离子去除率略有下降 [29]
聚己内酯(PCL) 微米纤维无结节且连续,纤维平均直径在0.66~0.71 μm之间 PCL/CS纤维孔径增大,且核壳结构纤维更利于细胞黏附、生长和增殖 [30]
聚乳酸 纳米纤维的平均直径在234~562 nm之间,且纤维膜的孔隙率增高 随着初始金属离子浓度、pH值和溶液温度的增加,纳米纤维的吸附量增加 [31]

表4

天然聚合物及其衍生物与壳聚糖共混纺丝研究总结"

纺丝原料 溶剂体系 纤维直径 纤维性能 参考文献
壳聚糖/醋酸纤维素 乙酸 平均直径为(335±242) nm 对腐殖酸的吸附量为184.72 mg/g [33]
壳聚糖/纤维素 1-乙基-3-甲基咪唑醋酸酯 平均直径小于200 nm 对金黄色葡萄球菌的抗菌活性提高 [34]
壳聚糖/磷酸化
纤维素(PCF)
醋酸 纤维直径为(21.5±3.7) μm 对Cd(II)的最大吸附量为591 mg/g [35]
壳聚糖/胶原蛋白 HFIP/TFA
(90/10)
随着壳聚糖与胶原蛋白比例的增加,纤维直径减小 力学性能优异,可作为组织工程支架 [36]
壳聚糖/丝素蛋白(SF) HFIP和HFIP/TFA(9/1) 纤维直径为(214.0 ± 108.7) nm,且随CS与SF比例的增大而减小 具有良好的抗菌性,可作为伤口敷料 [37]

表5

壳聚糖基纳米纤维吸附重金属离子的相关研究总结"

吸附剂 重金属 作用原理 吸附效果 重复再生性能 参考文献
氨基功能化壳聚糖/二氧化硅纳米纤维 Ni2+、Cu2+、Pb2+ 在壳聚糖网络中加入硅氧烷、硅醇和胺等负官能团,增加了活性吸附位点 对Ni2+、Cu2+和Pb2+的最大吸附量分别为696.2、640.5、575.5 mg/g 对重金属离子的吸附能力在5次吸附-解吸循环后略有下降 [40]
壳聚糖/氧化石墨烯复合纳米纤维 Cu2+、Pb2+、Cr2+ 酸性溶液中防止Pb2+、Cu2+形成Pb(OH)2、Cu(OH)2等络合物,且羟基与Cr发生氧化还原反应 对Pb2+、Cu2+和Cr6+离子的最大吸附量分别为461.3、423.8和310.4 mg/g 5次吸附-解吸循环后,对Pb2+、Cu2+和Cr6+的吸附能力仍分别保持在93%、91.5%、91% [41]
壳聚糖/聚环氧乙烷纳米纤维 Cu2+、Zn2+、Pb2+ 聚环氧乙烷可增强壳聚糖的可纺性,并使纤维获得高比表面积、亲水性,促进其对金属离子的螯合 对Cu2+、Zn2+、Pb2+离子的最大吸附量分别为120、117、108 mg/g 在第4次和第5次吸附-解吸循环后,去除率分别下降0.75%和1.31% [42]
聚乙烯吡咯烷酮/壳聚糖共混纳米纤维 U6+ 弱酸性环境中,U6+主要以正电荷形式存在,易通过静电吸附作用与负极化的羰基氧原子结合 在pH=6时,对U6+的最大吸附量为(167±25) mg/g 重复使用5次后对U6+的吸附率仅降低12.5% [43]

表6

壳聚糖基纳米纤维吸附染料的相关研究总结"

吸附剂材料 染料 作用原理 吸附效果 重复再生性能 参考文献
壳聚糖/聚乙烯醇纳米纤维 直接红80 正电荷的吸附位点与阴离子染料之间产生强烈的静电吸引 pH=2.1时对直接红80的最大吸附量为790 mg/g 完成第1次吸附-解吸后吸附能力没有下降 [45]
CS/PVA/SiO2纳米纤维 直接红23 氨基质子化形成—NH3+,与阴离子染料DR23发生静电吸引 对直接红23的截留率为98% 5次吸附-解吸循环后,吸附量仍达87.2% [46]
壳聚糖/聚酰胺纳米纤维 活性黑5(RB5)、胭脂红(P4R) 带正电荷的聚合链之间相互排斥,促进染料与吸附剂接触,增强对负电荷染料分子的吸附 pH=1时,对RB5和P4R的最大吸附量分别为456.9、502.4 mg/g 可重复使用4次并保持初始吸附能力,但第5次循环时纤维被分解 [47]
CS/醋酸纤维素/
碳纳米管/铁氧
体/TiO2纳米
纤维
刚果红、亚甲基蓝 共混纤维与染料之间的π-π相互作用促进对染料的吸附 最大染料吸附量为655.23 mg/g,但对阳离子染料的吸附量几乎为0 6次吸附一解吸循环后,对甲基橙的吸附量仅下降6.85% [48]

图2

壳聚糖的吸附作用机制"

[1] 刘雷艮, 沈忠安, 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(7): 12-16.
LIU Leigen, SHEN Zhongan, HONG Jianhan. Preparation and properties of electrostatic spinning efficient dust proof composite filter material[J]. Journal of Textile Research, 2015, 36(7): 12-16.
[2] GAO Q, WANG J, LIU J, et al. High mechanical performance based on the alignment of cellulose nanocrystal/chitosan composite filaments through continuous coaxial wet spinning[J]. Cellulose, 2021, 28(12): 7995-8008.
[3] YOU Y, XIAO C, HUANG Q, et al. Study on poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membranes with surface modification by a chemical vapor deposition method[J]. RSC Advances, 2018, 8(1): 102-110.
[4] CHRIST H A, MENZEL H. Electrospinning and photorosslinking of highly modified fungal chitosan[J]. Macromolecular Materials & Engineering, 2022. DOI: 10.1002/mame.202200430.
[5] 张显华, 冯向伟, 陈莉娜, 等. TSF/CS 复合纳米纤维的制备及后处理研究[J]. 上海纺织科技, 2019, 47(12):82-84,88.
ZHANG Xianhua, FENG Xiangwei, CHEN Lina, et al. Study on preparation and post-treatment of TSF/CS composite nanofibers[J]. Shanghai Textile Science & Technology, 2019, 47(12):82-84,88.
[6] LI C, LOU T, YAN X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal[J]. International Journal of Biological Macromolecules, 2018, 106: 768-774.
doi: S0141-8130(17)32631-4 pmid: 28818720
[7] GENG X, KWON O H, JANG J. Electrospinning of chitosan dissolved in concentrated acetic acid solu-tion[J]. Biomaterials, 2005, 26(27): 5427-5432.
[8] SANGSANOH P, SUPAPHOL P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions[J]. Biomacromolecules, 2006, 7(10): 2710-2714.
pmid: 17025342
[9] CHEN L, LIU Z, SHI J, et al. Preparation and antibacterial properties of chitosan/polyvinyl alcohol nanofibrous mats using different organic acids as solvents[J]. Process Biochemistry, 2022. DOI: 10.1016/j.procbio.2022.08.025.
[10] VAN-PHAM D T, QUYEN T T B, VAN-TOAN P, et al. Temperature effects on electrospun chitosan nanofibers[J]. Green Processing and Synthesis, 2020, 9(1): 488-495.
[11] MAZOOCHI T, JABBARI V. Chitosan nanofibrous scaffold fabricated via electrospinning: the effect of processing parameters on the nanofiber morphology[J]. International Journal of Polymer Analysis and Characterization, 2011, 16(5): 277-289.
[12] THIRUGNANASAMBANDHAM K, SIVAKUMAR V. Preparation of chitosan based nanofibers: optimization and modeling[J]. International Journal of Chemical Reactor Engineering, 2016, 14(1): 283-288.
[13] PEZESHKI-MODARESS M, ZANDI M, MIRZADEH H. Fabrication of gelatin/chitosan nanofibrous scaffold: process optimization and empirical modeling[J]. Polymer International, 2015, 64(4): 571-580.
[14] TSOU S Y, LIN H S, WANG C. Studies on the electrospun nylon 6 nanofibers from polyelectrolyte solutions: 1: effects of solution concentration and temperature[J]. Polymer, 2011, 52(14): 3127-3136.
[15] 孙玮, 黄靓靓, 张佩华. 壳聚糖纺丝液性能对静电纺纤维形态的影响[J]. 产业用纺织品, 2021, 39(5): 28-31,37.
SUN Wei, HUANG Liangliang, ZHANG Peihua. Effect of chitosan spinning solution on morphology of electrostatic spinning fibers[J]. Technical Textiles, 2021, 39(5): 28-31, 37.
[16] DOBROVOLSKAYA I P, YUDIN V E, POPRYADUKHIN P V, et al. Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers[J]. Carbohydrate Polymers, 2018, 194: 260-266.
doi: S0144-8617(18)30339-4 pmid: 29801838
[17] YANG G Z, LI H P, YANG J H, et al. Influence of working temperature on the formation of electrospun polymer nanofibers[J]. Nanoscale Research Letters, 2017, 12(1): 1-10.
[18] FENG Z Q, LEACH M K, CHU X H, et al. Electrospun chitosan nanofibers for hepatocyte culture[J]. Journal of Biomedical Nanotechnology, 2010, 6(6): 658-666.
[19] 王良安, 庄旭品, 晁贵群, 等. 精氨酸改性壳聚糖纳米纤维膜的制备及其BSA亲和吸附性能研究[J]. 山东纺织科技, 2016, 57(6): 1-5.
WANG Liangan, ZHUANG Xupin, CHAO Guiqun, et al. Preparation of chitosan nanofiber membrane modified by arginine and its BSA affinity and adsorption proper-ties[J]. Shandong Textile Science & Technology, 2016, 57(6): 1-5.
[20] ZIA Q, TABASSUM M, UMAR M, et al. Cross-linked chitosan coated biodegradable porous electrospun membranes for the removal of synthetic dyes[J]. Reactive & Functional Polymers, 2021. DOI: 10.1016/j.reactfunctpolym.2021.104995.
[21] XUE C, WILSON L D. Preparation and characterization of salicylic acid grafted chitosan electrospun fibers[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2021.118751.
[22] CHEAH W Y, SHOW P L, NG I S, et al. Antibacterial activity of quaternized chitosan modified nanofiber membrane[J]. International Journal of Biological Macromolecules, 2019, 126: 569-577.
doi: S0141-8130(18)36493-6 pmid: 30584947
[23] LI C, LUO X, LI L, et al. Carboxymethyl chitosan-based electrospun nanofibers with high citral-loading for potential anti-infection wound dressings[J]. International Journal of Biological Macromolecules, 2022, 209: 344-355.
doi: 10.1016/j.ijbiomac.2022.04.025 pmid: 35413309
[24] THIRUGNANASAMBANDHAM K, SIVAKUMAR V. Preparation of chitosan based nanofibers: optimization and modeling[J]. International Journal of Chemical Reactor Engineering, 2016, 14(1): 283-288.
[25] 汪希铭, 程凤, 高晶, 等. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306
WANG Ximing, CHENG Feng, GAO Jing, et al. Effect of crosslinking modification on properties of chitosan/polyvinyl oxide nanofiber membrane for dressing[J]. Journal of Textile Research, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306
[26] 杨梅, 孙润军, 王红红. 静电纺壳聚糖/PVA 纳米纤维膜对甲基橙的吸附特性[J]. 合成纤维, 2019 (1): 15-20.
YANG Mei, SUN Runjun, WANG Honghong. Adsorption properties of methyl orange on electrospun chitosan/PVA nanofiber membranes[J]. Synthetic Fiber in China, 2019(1): 15-20.
[27] MOHRAZ M H, GOLBABAEI F, YU I J, et al. Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications[J]. International Journal of Environmental Science & Technology, 2019, 16(2): 681-694.
[28] ZHANG R Y, ZASLAVSKI E, VASILYEV G, et al. Tunable pH-responsive chitosan-poly(acrylic acid) electrospun fibers[J]. Biomacromolecules, 2018, 19(2): 588-595.
[29] JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions[J]. Journal of Hazardous Materials, 2019, 368: 10-20.
[30] SURUCU S, SASMAZEL H T. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds[J]. International Journal of Biological Macromolecules, 2016, 92: 321-328.
doi: S0141-8130(16)30729-2 pmid: 27387013
[31] LEE D, CHEN D W C, CHIU S F, et al. Electrospun nanofibrous polylactide/chitosan mats for the filtration of silver ions[J]. Textile Research Journal, 2015, 85(4): 346-355.
[32] SOMSAP J, KANJANAPONGKUL K, TEPSORN R. Effect of parameters on the morphology and fibre diameters of edible electrospun chitosan-cellulose acetate-gelatin hybrid nanofibres[C]// 2nd International Conference on Electronic Information Technology and Computer Engineering. Shanghai: Shanghai University of Engineering Science, 2018. DOI:10.1051/matecconf/201819203038.
[33] ZHANG Y, WANG F, WANG Y. Electrospun cellulose acetate/chitosan fibers for humic acid removal: construction guided by intermolecular interaction study[J]. ACS Applied Polymer Materials, 2021, 3(10): 5022-5029.
[34] PHAN D N, LEE H, HUANG B, et al. Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property[J]. Cellulose, 2019, 26(3): 1781-1793.
[35] DEVARAYAN K, HANAOKA H, HACHISU M, et al. Direct electrospinning of cellulose-chitosan composite nanofiber[J]. Macromolecular Materials and Engineering, 2013, 298(10): 1059-1064.
[36] CHEN Z, MO X, QING F. Electrospinning of collagen-chitosan complex[J]. Materials Letters, 2007, 61(16): 3490-3494.
[37] CAI Z, MO X, ZHANG K, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications[J]. International Journal of Molecular Sciences, 2010, 11(9): 3529-3539.
[38] 卢丽萍, 王芳芳, 吴敏. 聚乙烯醇/壳聚糖/硝酸铈共混纤维毡的制备及其对 Cr (Ⅵ) 的吸附性能[J]. 纺织学报, 2012, 33(5): 15-19.
LU Liping, WANG Fangfang, WU Min. Preparation of polyvinyl alcohol/chitosan/cerium nitrate blended fiber mat and its adsorption properties for Cr(Ⅵ)[J]. Journal of Textile Research, 2012, 33(5): 15-19.
[39] LI Y, LI M, ZHANG J, et al. Adsorption properties of the double-imprinted electrospun crosslinked chitosan nanofibers[J]. Chinese Chemical Letters, 2019, 30(3): 762-766.
[40] SABOURIAN V, EBRAHIMI A, NASERI F, et al. Fabrication of chitosan/silica nanofibrous adsorbent functionalized with amine groups for the removal of Ni (II), Cu (II) and Pb (II) from aqueous solutions: Batch and column studies[J]. RSC Advances, 2016, 6(46): 40354-40365.
[41] NAJAFABADI H H, IRANI M, RAD L R, et al. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent[J]. RSC Advances, 2015, 5(21): 16532-16539.
[42] SHARIFUL M I, SHARIF S B, LEE J J L, et al. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly(ethylene oxide) nanofibrous membrane[J]. Carbohydrate Polymers, 2017, 157: 57-64.
[43] CHRISTOU C, PHILIPPOU K, KRASIA-CHRISTOFOROU T, et al. Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers[J]. Carbohydrate Polymers, 2019, 219: 298-305.
doi: S0144-8617(19)30544-2 pmid: 31151529
[44] LI C Y, LOU T, YAN X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal[J]. International Journal of Biological Macromolecules, 2018, 106: 768-774.
doi: S0141-8130(17)32631-4 pmid: 28818720
[45] HOSSEINI S A, VOSSOUGHI M, MAHMOODI N M. Preparation of electrospun affinity membrane and cross flow system for dynamic removal of anionic dye from colored wastewater[J]. Fibers and Polymers, 2017, 18(12): 2387-2399.
[46] HOSSEINI S A, VOSSOUGHI M, MAHMOODI N M, et al. Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles[J]. Journal of Cleaner Production, 2018, 183: 1197-1206.
[47] DOTTO G L, SANTOS J M N, TANABE E H, et al. Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions[J]. Journal of Cleaner Production, 2017, 144: 120-129.
[48] ZABIHISAHEBI A, KOUSHKBAGHI S, PISHNAMAZI M, et al. Synthesis of cellulose acetate/ chitosan/ SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr (VI), As (V), methylene blue and Congo red from aqueous solutions[J]. International Journal of Biological Macromolecules, 2019, 140: 1296-130.
[49] PARADIS-TANGUAY L, CAMIRÉ A, RENAUD M, et al. Sorption capacities of chitosan/polyethylene oxide (PEO) electrospun nanofibers used to remove ibuprofen in water[J]. Journal of Polymer Engineering, 2019, 39(3): 207-215.
[50] DOAN H N, VO P P, BAGGIO A, et al. Environmentally friendly chitosan-modified polycaprolactone nanofiber/nanonet membrane for controllable oil/water separation[J]. ACS Applied Polymer Materials, 2021, 3(8): 3891-3901.
[51] RABANIMEHR F, FARHADIAN M, NAZAR A R S. A high-performance microreactor integrated with chitosan/Bi2WO6/CNT/TiO2 nanofibers for adsorptive/photocatalytic removal of cephalexin from aqueous solution[J]. International Journal of Biological Macromolecules, 2022, 208: 260-274.
[52] ABDOLMALEKI A Y, ZILOUEI H, KHORASANI S N, et al. Adsorption of tetracycline from water using glutaraldehyde-crosslinked electrospun nanofibers of chitosan/poly (vinyl alcohol)[J]. Water Science and Technology, 2018, 77(5): 1324-1335.
[53] NIRAGIRE H, KEBEDE T G, DUBE S, et al. Chitosan-based electrospun nanofibers mat for the removal of acidic drugs from influent and effluent[J]. Chemical Engineering Communications, 2022(9): 1-23.
[54] NTHUMBI R M, NGILA J C, MOODLEY B, et al. Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water[J]. Physics and Chemistry of the Earth: Parts A/B/C, 2012, 50: 243-251.
[1] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[2] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[3] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[4] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[5] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[6] 范博, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界CO2流体染色聚酯纤维中的扩散行为[J]. 纺织学报, 2024, 45(02): 134-141.
[7] 杨美慧, 李博, 沈艳琴, 武海良. 再生角蛋白凝胶对纺织退浆废水中浆料分子的吸附性能[J]. 纺织学报, 2024, 45(02): 142-152.
[8] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[9] 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127.
[10] 颜素崟, 周丽春, 郑庭, 金福江. 蒽醌型染料分子羟基最优取代位置的多目标优化设计方法[J]. 纺织学报, 2024, 45(01): 128-135.
[11] 寿晨超, 娜仁高娃, 高素芸, 刘剑, 赵丰. 天然染料质谱数据库的建立与应用[J]. 纺织学报, 2023, 44(11): 120-131.
[12] 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
[13] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[14] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[15] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!