纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 27-34.doi: 10.13475/j.fzxb.20221104901

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用

栗志坤1, 于影2(), 左雨欣3, 史豪秦1, 金玉珍1, 陈洪立1   

  1. 1.浙江理工大学 机械工程学院, 浙江 杭州 310018
    2.嘉兴学院 信息科学与工程学院, 浙江 嘉兴 314001
    3.嘉兴南湖学院, 浙江 嘉兴 314001
  • 收稿日期:2023-01-05 修回日期:2023-06-27 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 于影(1988—),女,副教授,博士。研究方向为功能化纤维材料制备与柔性电子器件。E-mail:yingyu@zjxu.edu.cn。
  • 作者简介:栗志坤(1999—),男,硕士生。主要研究方向为功能纤维。
  • 基金资助:
    国家自然科学基金项目(52305059);浙江省自然科学基金项目(LGG21E050021);浙江省自然科学基金项目(LQ20E040007);嘉兴市应用性基础研究专项(2020AY10015);嘉兴市应用性基础研究专项(2020AD10015)

Analysis of flexoelectric effect of polyacrylonitrile/MoS2 composite film and its applications

LI Zhikun1, YU Ying2(), ZUO Yuxin3, SHI Haoqin1, JIN Yuzhen1, CHEN Hongli1   

  1. 1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China
  • Received:2023-01-05 Revised:2023-06-27 Published:2024-05-15 Online:2024-05-31

摘要:

复合薄膜中挠曲电材料的质量分数对薄膜的挠曲电效应影响显著,为探究聚丙烯腈(PAN)/MoS2复合薄膜中MoS2质量分数对其挠曲电压及挠曲电系数的影响规律,采用静电纺丝方法制备PAN/MoS2复合薄膜,借助扫描电子显微镜和X射线衍射仪对复合薄膜的结构、形貌、元素组成等进行表征,基于悬臂梁方法测试不同MoS2质量分数对PAN/MoS2复合薄膜挠曲电效应的影响,通过间歇式挠曲电效应测试检测复合薄膜的稳定性。结果表明:挠曲电压和挠曲电系数随着MoS2质量分数的增大而提高,且在MoS2质量分数为50%时挠曲电压和挠曲电系数达到最优,分别为0.8 V和1.96 nC/m;该薄膜的挠曲电效应稳定性优异,串联多个PAN/MoS2复合薄膜可获得较高的挠曲电压,且电压衰减极弱,可广泛适用于微小型可穿戴电子设备。

关键词: 挠曲电效应, MoS2, 聚丙烯腈, 静电纺丝, 复合薄膜, 挠曲电系数, 可穿戴电子设备

Abstract:

Objective In recent years, flexible electronic devices and smart clothing have been developed rapidly. However, traditional batteries are difficult to meet the practical needs of portability and integration of flexible products. Therefore, there is a demand on the development of flexible energy devices suitable for flexible wearable electronics. Flexoelectricity is an electromechanical coupling effect that converts mechanical energy into electrical energy through the flexural deformation of thin films, thereby powering flexible and wearable electronic devices. molybdenum disulfide (MoS2) and polyacrylonitrile (PAN) composite films have good flexoelectric response, however, the factors affecting the flexoelectric voltage and flexoelectric coefficient are still to be studied.

Method In this study, the PAN/MoS2 composite film will be prepared by electrospinning, and the structure, morphology and elemental composition of the composite film will be characterized by scanning electron microscope and X-ray diffractometer. The influence of different mass fractions of MoS2 on the flexoelectric effect of PAN/MoS2 composite films was tested through the method of cantilever beam. The flexoelectric stability of the composite films was also examined by intermittent flexoelectric testing. In addition, this paper reported a high flexoelectric voltage generated by connecting multiple composite films in series, which is applicable to micro-miniature wearable electronic devices.

Results The characterization of composite films fully demonstrated that MoS2 was successfully loaded on the PAN fiber with good crystallinity, understanding that pure PAN film exhibits a weak flexoelectric effect. After adding MoS2 to the film, the flexoelectric voltage and flexoelectric coefficient of the composite film were increased with the increase of mass fraction of MoS2, and the optimum values were obtained when the mass fraction of MoS2 was 50%, which were 0.8 V and 1.96 nC/m, respectively. Continuously increasing the content of MoS2 in the composite film, the flexoelectric coefficient and flexoelectric voltage of the film were decreased rapidly. This is mainly because when the mass fraction of MoS2 was high, clusters were easy to appear, and this would seriously hinder the orderly arrangement of molecular chains, thereby limiting the excursion of positive and negative electrons and inhibiting the flexoelectric effect. The flexoelectric test was carried out every other day, and the test duration was 5 000 s. During the continuous 7 d test, the flexoelectric voltage was about 0.8 V, and the consistency of the voltage value was good, indicating stable the flexoelectric effect of the PAN/MoS2 composite film. In addition, multiple PAN/MoS2 composite films with 50% MoS2 mass fraction were connected in series and packaged. The flexoelectric voltage of a single composite film was about 0.8 V, and the flexoelectric voltages of 3 and 5 composite films in series were 2.3 V and 3.8 V, respectively. Connecting multiple PAN/MoS2 composite films in series obtained high flexoelectric voltage with little voltage attenuation. Experiments proved that the flexoelectric effect obtained by mechanical flexural deformation could almost meet the needs of tiny wearable electronic devices.

Conclusion The PAN/MoS2 composite film was prepared by electrospinning, and MoS2 nanoparticles were successfully loaded on the surface of PAN fibers. The mass fraction of MoS2 in PAN/MoS2 composite film has a significant effect on its flexoelectric effect. Experiments show that when the mass fraction of MoS2 is less than 50%, the flexoelectric voltage and flexoelectric coefficient increase with the increase of mass fraction of MoS2, when the mass fraction of MoS2 reaches 50%, the optimal flexoelectric voltage and flexoelectric coefficient can be obtained, and when the mass fraction of MoS2 exceeds 50%, the MoS2 particles will cluster and weaken the flexoelectric effect. The composite film prepared in this paper has excellent flexoelectric stability through intermittent flexoelectric test. The experimental results show that connecting the composite films in series can obtain high flexural voltage with extremely weak voltage attenuation, which can meet the needs of tiny flexible wearable electronic devices.

Key words: flexoelectric effect, MoS2, polyacrylonitrile, electrospinning, composite film, flexoelectric coefficient, wearable electronic device

中图分类号: 

  • TQ152

图1

PAN/MoS2复合薄膜的制备流程示意图"

图2

悬臂梁法测量示意图"

图3

PAN薄膜和50%MoS2复合薄膜的SEM照片"

图4

50%MoS2复合薄膜元素分析结果"

图5

PAN薄膜和50%MoS2复合薄膜XRD曲线"

图6

不同复合薄膜的挠曲电压曲线"

图7

MoS2质量分数与挠曲电系数的关系曲线"

图8

50%MoS2复合薄膜挠曲电效应稳定性测试结果"

图9

50%MoS2复合薄膜串联示意图"

图10

不同数量50%MoS2复合薄膜串联的挠曲电压曲线"

图11

基于50%MoS2复合薄膜的弯曲传感器"

[1] WANG K, WANG S, LIU J, et al. Fe-based coordination polymers as battery-type electrodes in semi-solid-state battery-supercapacitor hybrid devices[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15315-15323.
[2] YANG Y N, JIANG F L, LI Y Q, et al. A surface coordination interphase stabilizes a solid-state battery[J]. Angewandte Chemie International Edition, 2021, 60(45): 24162-24170.
[3] YE R, HAMZELUI N, IHRIG M, et al. Water-based fabrication of a Li|Li7La3Zr2O12|LiFePO4 solid-state battery-toward green battery production[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(23): 7613-7624.
[4] ZHANG S, LIU K, WU T, et al. Tunable flexoelectricity of elastomers[J]. Journal of Physical Chemistry C, 2020, 124(44): 24429-24434.
[5] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[6] MOREIRA K S, LORENZETT E, DEVENS A L, et al. Low-cost elastomer-based flexoelectric devices[J]. Journal of Applied Physics, 2021. DOI: 10.1063/5.0048989.
[7] QU Y, JIN F, YANG J. Vibrating flexoelectric micro-beams as angular rate sensors[J]. Micromachines, 2022. DOI: 10.3390/mi13081243.
[8] ZHANG S, SHAO S, YANG X, et al. An enhanced flexoelectric dielectric elastomer actuator with stretchable electret[J]. Smart Materials and Structures, 2021. DOI: 10.1088/1361-665X/ac2de1.
[9] 杨丽, 王涛, 石现兵, 等. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(9): 149-155.
YANG Li, WANG Tao, SHI Xianbing, et al. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation[J]. Journal of Textile Research, 2022, 43(9): 149-155.
[10] KIM S Y, JANG S, KIM K N, et al. Multilayered MoS2 sphere-based triboelectric-flexoelectric nanogenerators as self-powered mechanical sensors for human motion detection[J]. ACS Applied Nano Materials, 2022, 5(10): 15192-15200.
[11] KUMUTHINI R, RAMACHANDRAN R, THERESE H A, et al. Electrochemical properties of electrospun MoS2@C nanofiber as electrode material for high-performance supercapacitor application[J]. Journal of Alloys and Compounds, 2017, 705: 624-630.
[12] 杨科, 闫俊, 肖勇, 等. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(5): 77-85.
YANG Ke, YAN Jun, XIAO Yong, et al. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemifcal deposition and their electrochemical characteristics[J]. Journal of Textile Research, 2022, 43(5): 77-85.
[13] ZHU S, NIE L. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 28-56.
[14] CASTRO K C, CAMPOS M G N, MEI L H I. Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspec-tives[J]. International Journal of Biological Macromolecules, 2021, 173: 251-266.
[15] DENG X, ZHAO Y, GAO H, et al. Studies on electro-optical properties of polymer dispersed liquid crystals doped with reticular nanofiber films prepared by electrospinning[J]. Liquid Crystals, 2021, 48(13): 1850-1858.
[16] CAO J. Bioelectricity inspired polymer electrolyte membranes for sensing and engergy harvesting applications[D]. Akron: University of Akron, 2018: 57-62.
[17] XIANG Q, YU J, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(15): 6575-6578.
[18] QIANWEN M, YAPING D, LI L, et al. Electrospun MoS2 composite carbon nanofibers for determination of vanillin[J]. Journal of Electroanalytical Chemistry, 2019, 833: 297-303.
[19] 万萌, 虞丹妮, 朱罕, 等. 二硫化钼纳米片/碳纳米纤维杂化材料的制备及其析氢性能[J]. 无机化学学报, 2017, 33(4): 595-600.
WAN Meng, YU Danni, ZHU Han, et al. Synthesis and hydrogen evolution performance of molybdenum disulfide nanosheets/carbon nanofibers hybrid materials[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(4): 595-600.
[20] SHEVLIAKOVA H V, YESYLEVSKYY S O, KUPCHAK I, et al. Flexoelectric and piezoelectric coupling in a bended MoS2 monolayer[J]. Symmetry, 2021. DOI: 10.3390/sym13112086.
[21] HIRAKATA H, FUKUDA Y, SHIMADA T. Flexoelectric properties of multilayer two-dimensional material MoS2[J]. Journal of Physics D: Applied Physics, 2022. DOI: 10.1088/1361-6463/ac4367.
[22] CAO S, ZOU H, JIANG B, et al. Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107635.
[1] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
[2] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[3] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[4] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[5] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[6] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[7] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[8] 韩俊峰, 王云霞, 吴伟, 胡超凡, 封其春, 杜兆芳. 纤维素/茶渣复合薄膜的可控制备及其食品保鲜性能[J]. 纺织学报, 2024, 45(03): 28-35.
[9] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[10] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[11] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[12] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[13] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[14] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[15] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!