纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 105-112.doi: 10.13475/j.fzxb.20230507301
武守营1,2, 黄启超2, 张开封2, 张琳萍1,2,3, 钟毅1,2,3, 徐红1,2,3, 毛志平1,2,3()
WU Shouying1,2, HUANG Qichao2, ZHANG Kaifeng2, ZHANG Linping1,2,3, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3()
摘要:
为开发新型、高效的染色废水处理方法,通过铁-三联吡啶(FeⅢ(tpy)Cl3)配合物活化高碘酸盐(PI)构建了FeⅢ(tpy)Cl3/PI催化氧化体系。在此基础上,采用酸性红1(AR1)作为染色废水模型污染物测试了该体系的催化降解性能,并通过捕获和探针实验研究了FeⅢ(tpy)Cl3配合物活化PI降解酸性红1的机制。结果表明:FeⅢ(tpy)Cl3配合物能够高效活化PI实现酸性红1的快速降解,15 min内对AR1的去除率高达98%;FeⅢ(tpy)Cl3/PI体系对酸性红1的降解符合伪一级动力学模型,同时酸性红1的降解速率常数随FeⅢ(tpy)Cl3配合物和PI浓度的增加而呈线性增加;在FeⅢ(tpy)Cl3/PI体系中包含超氧自由基、单线态氧以及高价铁,这些活性物质共同促进酸性红1的降解;该体系不仅对多种有机物的降解表现出普适性,同时催化降解过程不受溶液pH值以及常见无机盐离子的干扰。
中图分类号:
[1] | AL-TOHAMY Rania, ALI Sameh S, LI Fanghua, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety[J]. Ecotoxicology and Environental Safety, 2022. DOI:10.1016/j.ecoenv.2021.113160. |
[2] | TKACZYK Angelika, MITROWSKA Kamila, POSYNIAK Andrzej. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review[J]. Science of the Total Environment, 2020. DOI:10.1016/j.scitotenv.2020.137222. |
[3] | ZHU Yanping, ZHU Runliang, XI Yunfei, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019. DOI:10.1016/j.apcatb.2019.05.041. |
[4] | KOHANTORABI Mona, MOUSSAVI Gholamreza, GIANNAKIS Stefanos. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2020.127957. |
[5] | WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contami-nants[J]. Chemical Engineering Journal, 2018. DOI:10.1016/j.cej.2017.11.059. |
[6] | ULUCAN-ALTUNTAS Kubra, GUVENC Senem Yazici, CAN-GUVEN Emine, et al. Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation[J]. Environmental Science and Pollution Research, 2022, 29(6): 9110-9123. |
[7] | YANG Lie, HE Liuyang, MA Yongfei, et al. Periodate-based oxidation focusing on activation, multivariate-controlled performance and mechanisms for water treatment and purification[J]. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.120746. |
[8] | LING Chen, WU Shuai, HAN Jiangang, et al. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production[J]. Water Research, 2022. DOI:10.1016/j.watres.2022.118676. |
[9] | YU Yanghai, DONG Hongyu, LIAN Lushi, et al. Selective and rapid degradation of organic contaminants by Mn(V) generated in the Mn(II)-nitrilotriacetic acid/periodate process[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.136387. |
[10] | BOKARE Alok D, CHOI Wonyong. Singlet-oxygen generation in alkaline periodate solution[J]. Environmental Science & Technology, 2015, 49(24): 14392-14400. |
[11] | CHOI Yejin, YOON Ho-Il, LEE Changha, et al. Activation of periodate by freezing for the degradation of aqueous organic pollutants[J]. Environmental Science & Technology, 2018, 52(9): 5378-5385. |
[12] | ZHANG Xi, KAMALI Mohammadreza, ULENERS Timon, et al. UV/TiO2/periodate system for the degradation of organic pollutants-kinetics, mechanisms and toxicity study[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.137680. |
[13] | ZHANG Xi, YU Xiaobin, YU Xinyue, et al. Efficiency and mechanism of 2,4-dichlorophenol degradation by the $\mathrm{UV/IO}_4^-$ process[J]. Science of the Total Environment, 2021. DOI:10.1016/j.scitotenv.2021.146781. |
[14] | DU Jiangkun, XIAO Guangfeng, XI Yanxing, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020. DOI:10.1016/j.watres.2019.115278. |
[15] | LEE Hongshin, YOO Ha-Young, CHOI Jihyun, et al. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles[J]. Environmental Science & Technology, 2014, 48(14): 8086-8093. |
[16] |
ZHANG Ying, ZHOU Minghua. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values[J]. Journal of Hazardous Materials, 2019, 362: 436-450.
doi: S0304-3894(18)30830-6 pmid: 30261437 |
[17] | YE Yuxin, WEN Cheng, WANG Jiawei, et al. Valence-dependent catalytic activities of iron terpyridine complexes for pollutant degradation[J]. Chemical Communication, 2020, 56(41): 5476-5479. |
[18] | IGARASHI Mami, ZHU Qianqian, SASAKI Masahide, et al. Catalytic oxidation of 2,4,6-tribromophenol using iron(Ⅲ) complexes with imidazole, pyrazole, triazine and pyridine ligands[J]. Journal of Molecular Catalysis A: Chemical, 2016, 413: 100-106. |
[19] |
DU Jiangkun, TANG Shigang, FAHEEM, et al. Insights into periodate oxidation of bisphenol A mediated by manga-nese[J]. Chemical Engineering Journal, 2019, 369: 1034-1039.
doi: 10.1016/j.cej.2019.03.158 |
[20] | ZONG Yang, ZHANG Hua, SHAO Yufei, et al. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants[J]. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.126991. |
[21] | WANG Lingli, LAN Xu, PENG Wenya, et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124436. |
[22] |
FAN Jinhong, QIN Hehe, JIANG Simin. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen[J]. Chemical Engineering Journal, 2019, 359: 723-732.
doi: 10.1016/j.cej.2018.11.165 |
[23] | DONG Yudan, ZHANG Liangqing, ZHOU Peng, et al. Natural cellulose supported carbon nanotubes and Fe3O4NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: an enhanced non-radical oxidation process[J]. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.127054. |
[24] | YU Yuqing, TAN Peng, HUANG Xinjue, et al. Homogeneous activation of peroxymonosulfate using a low-dosage cross-bridged cyclam manganese (II) complex for organic pollutant degradation via a nonradical pathway[J]. Journal of Hazardous Materials, 2020. DOI:10.1016/j.jhazmat.2020.122560. |
[25] | GUO Dongli, YAO Yuan, YOU Shijie, et al. Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3[J]. Applied Catalysis B: Environmental, 2022. DOI:10.1016/japcatb2022.121289. |
[1] | 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149. |
[2] | 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141. |
[3] | 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227. |
[4] | 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112. |
[5] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[6] | 朱维维, 舒伟, 顾文娟. 负载不同极性药物对粘胶织物结构和性能的影响[J]. 纺织学报, 2024, 45(04): 136-141. |
[7] | 张永芳, 郭红, 史晟, 阎智锋, 侯文生. 涤纶/棉混纺织物在水热体系中的降解[J]. 纺织学报, 2024, 45(04): 160-168. |
[8] | 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179. |
[9] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147. |
[10] | 陈咏, 叶梦婷, 王朝生, 乌婧, 王华平. 聚丁二酸丁二醇酯性能调控策略及应用[J]. 纺织学报, 2024, 45(01): 220-229. |
[11] | 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239. |
[12] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[13] | 张永芳, 费鹏飞, 阎智锋, 王淑花, 郭红. 废弃纤维素纺织品水热降解技术的研究进展[J]. 纺织学报, 2023, 44(12): 216-224. |
[14] | 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34. |
[15] | 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133. |
|