纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 127-133.doi: 10.13475/j.fzxb.20230502401

• 染整工程 • 上一篇    下一篇

汽车座椅用抗菌涤纶针织物制备及其性能

李倩倩, 郭晓玲(), 崔文豪, 许宇真, 王林峰   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2023-05-10 修回日期:2024-03-07 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 郭晓玲(1964—),女,教授。主要研究方向为纤维基纳米光催化耐久性抗菌材料及生态纺织品。E-mail:guo-xl@163.com
  • 作者简介:李倩倩(1998—),女,硕士生。主要研究方向为纺织材料纳米光催化耐久性抗菌。
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2020019)

Preparation and performance of antibacterial polyester knitted fabric for automotive seats

LI Qianqian, GUO Xiaoling(), CUI Wenhao, XU Yuzhen, WANG Linfeng   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2023-05-10 Revised:2024-03-07 Published:2024-06-15 Online:2024-06-15

摘要:

为解决汽车座椅用涤纶针织物耐久性抗菌问题,以钛酸四丁酯为钛源、硼酸和尿素为掺杂体,采用快速溶胶-凝胶浸渍负载法,通过优化工艺制备出负载硼氮共掺杂纳米二氧化钛(B-N-TiO2)抗菌剂的涤纶针织物。在模拟日光照射条件下采用振荡法测试抗菌涤纶针织物对大肠杆菌和金黄色葡萄球菌的抗菌性能。分析抗菌剂的光谱性质和微观形貌,并测试织物的断裂强力、耐磨性能、拒水性能等。结果表明:当浸渍时间为5 min、焙烘温度为120 ℃、焙烘时间为15 min时,所制抗菌涤纶针织物对大肠杆菌和金黄色葡萄球菌的抑菌率分别为98.4%和94.4%,其主要性能均符合相关标准要求;经20次洗涤后,其纤维表面仍包覆有大量抗菌剂,且抑菌率分别为91.8%和91.3%,抗菌耐久性优于AA级。

关键词: 硼氮共掺杂纳米二氧化钛, 汽车内饰纺织品, 涤纶针织物, 抗菌整理, 功能性纺织品

Abstract:

Objective Car seats are the most frequently touched parts by the human body during the use of the car, and human sweat and dirt can easily adhere to the car seat fabric. The interaction of the sweat and dirt can produce low fatty acids and some volatile compounds, which would emit foul odor, causing concerns to quality of life and human health. Therefore, it is necessary to develop antimicrobial car seat fabrics to improve the interior environment of automobiles.

Method With tetrabutyl titanate as titanium source, boric acid and urea as dopants, and polyester knitted fabric as substrate, polyester knitted fabric loaded with boron-nitrogen co-doped nano-titanium dioxide (B-N-TiO2) antibacterial agent was prepared by rapid sol-gel method. The antibacterial properties of B-N-TiO2/polyester knitted fabric specimens were analyzed by oscillation tests under solar light illumination using Escherichia coli and Staphylococcus aureus as the target strains. X-ray diffraction and UV-Vis diffuse reflection absorption spectroscopy were used to analyze the spectral properties of antibacterial agents. The breaking strength, the wear resistance, the water repellency, the color fastness against rubbing, and the pH value of polyester knitted fabric specimens before and after antibacterial finishing were tested.

Results By measuring the bacteriostatic rate of B-N-TiO2 photocatalytic antibacterial agents with different boron doped amounts on E. coli, the optimal molar ratio of boric acid and tetrabutyl titanate was found to be 0.75∶1. The optimal impregnation loading process for B-N-TiO2/polyester knitted fabrics was selected by orthogonal test optimization process under the conditions of 5 min impregnation loading time, baking temperature 120 ℃, and baking time 15 min. The antibacterial inhibition rates of B-N-TiO2/polyester knitted fabric specimens prepared by the optimal process against Escherichia coli and Staphylococcus aureus were 98.4% and 94.4%, respectively, and the antibacterial rates after 20 washes were 91.8% and 91.3%, respectively. The microscopic morphology of the fabric before and after the loading of photocatalytic antibacterial agent was analyzed, and it was found that after finishing with antibacterial agent, a layer of smooth membrane was tightly coated on the surface of polyester fiber, and that after 20 washes, a large proportion of membrane was still tightly wrapped on the fiber surface. After loading the antibacterial agent, the breaking strength of the fabric was increased, the wear resistance was increased, and the water repellency level of the fabric was enhanced. The color fastness against rubbing was not changed. The pH value of the water extract of the antibacterial fabric was reduced, and the key properties were found in line with the requirements of relevant standards.

Conclusion B-N-TiO2 photocatalytic antibacterial agents have excellent loading effect on polyester fabrics. After 20 times of washing, a very small part of the antibacterial agent membrane on the surface of fiber in the antibacterial fabric cracks and falls off under the impact of water flow and steel ball rubbing, but a large quantity of antibacterial agent membrane wrapped on the fiber surface, which further indicates that the antibacterial fabric has excellent durability and antibacterial properties. The result confirms that the durable antibacterial performance of the B-N-TiO2/polyester knitted fabric exceeds AA level.

Key words: boron-nitrogen co-doped nano-titanium dioxide, textile for automotive interior, polyester knitted fabric, antibacterial finishing, functional textile

中图分类号: 

  • TS156

表1

正交试验因素水平表"

水平 A
浸渍时间/min
B
焙烘温度/℃
C
焙烘时间/min
1 1 80 5
2 3 100 10
3 5 120 15

表2

5种抗菌剂对大肠杆菌的抑菌率"

试样编号 抑菌率
1# 85.0
2# 90.2
3# 91.0
4# 95.5
5# 93.2

图1

B-N-TiO2和N-TiO2抗菌剂粉体的XRD图谱"

图2

N-TiO2和B-N-TiO2抗菌剂的紫外-可见漫反射吸收图谱"

表3

正交设计及试验结果分析"

试验号 A
浸渍时
间/min
B
焙烘温
度/℃
C
焙烘时
间/min
抑菌率/%
1* 1 80 5 87.5
2* 1 100 10 91.7
3* 1 120 15 97.9
4* 3 80 10 95.8
5* 3 100 15 97.9
6* 3 120 5 95.8
7* 5 80 15 97.9
8* 5 100 5 97.9
9* 5 120 10 97.9
K1 277.1 281.2 281.2
K2 289.5 287.5 285.4
K3 293.7 291.6 293.7
极差R 5.5 3.5 4.2
因素主次 A>C>B
优化方案 A3B3C3

表4

抗菌涤纶针织物对大肠杆菌和金黄色葡萄球菌的抑菌率"

试样类别 抑菌率
对大肠杆菌 对金黄色葡萄球菌
洗涤前试样 98.4 94.4
洗涤20次后试样 91.8 91.3

图3

预处理涤纶针织物试样、洗涤前抗菌织物试样和洗涤20次后抗菌织物试样的SEM照片(×10 000)"

表5

抗菌整理前后涤纶针织物主要性能测试结果"

试样 断裂强力/N 耐磨
次数
拒水
等级/
耐摩擦色
牢度/级

pH
纵向 横向 干摩擦 湿摩擦
原样 162 369 34 2 4 4 7.8
抗菌样 173 396 36 4 4 4 6.5
[1] 吴双全. 汽车内饰用纺织品整理技术的研究[J]. 纺织导报, 2021 (8): 34, 36-40.
WU Shuangquan. Study on finishing technology of automotive interior textiles[J]. China Textile Leader, 2021(8): 34, 36-40.
[2] 吴双全, 王楠, 谢姗山, 等. 汽车内饰纺织品整理技术研究与应用进展[J]. 针织工业, 2020 (7): 56-59.
WU Shuangquan, WANG Nan, XIE Shanshan, et al. Research and application progress of finishing technology for automotive interior textile[J]. Knitting Industries, 2020(7): 56-59.
[3] 吴双全, 张鑫. 抗菌抗病毒纺织品研发现状及其汽车内饰面料开发思路[J]. 产业用纺织品, 2020, 38(7): 1-5, 21.
WU Shuangquan, ZHANG Xin. Research and development status of antibacterial and antiviral textiles and the ideas for developing automotive interior fabrics[J]. Technical Textiles, 2020, 38(7): 1-5, 21.
[4] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[5] 邹志军. 汽车座椅面料产品的开发研究[J]. 时代汽车, 2019 (7): 136-137.
ZOU Zhijun. Development and research of automotive seat fabric products[J]. Times Automotive Journal, 2019(7): 136-137.
[6] 郭晓玲, 张彤, 曹陈华, 等. 负载掺杂纳米TiO2耐久抗菌织物的制备与表征[J]. 纺织学报, 2017, 38(6): 163-168,174.
GUO Xiaoling, ZHANG Tong, CAO Chenhua, et al. Preparation and characterization of durable antibacterial fabric loaded with doped nano-TiO2[J]. Journal of Textile Research, 2017, 38(6): 163-168, 174.
[7] 南清清, 曾庆红, 袁竟轩, 等. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(6): 197-205.
NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, et al. Advances on antibacterial textiles[J]. Journal of Textile Research, 2022, 43(6): 197-205.
[8] 抗菌整理技术浅析[J]. 网印工业, 2020 (12): 44-45.
Analysis of antibacterial finishing technology[J]. Screen Printing Industry, 2020(12): 44-45.
[9] 李胜臻, 张铃娟, 张鹏. 纺织品抗菌剂分类及安全性评价探讨[J]. 中国纤检, 2022(2): 48-50.
LI Shengzhen, ZHANG Lingjuan, ZHANG Peng. Discussion on the classification and safety evaluation of textile antimicrobials[J]. China Fiber Inspection, 2022(2): 48-50.
[10] 王林峰, 郭晓玲, 赵雪静. S-N-TiO2纳米薄膜改性棉针织物的抗菌性能和服用性能[J]. 产业用纺织品, 2021, 39(12): 42-48.
WANG Linfeng, GUO Xiaoling, ZHAO Xuejing. Antibacterial property and wearability performance of cotton knitted fabric modified by S-N-TiO2 nanofilm[J]. Technical Textiles, 2021, 39(12): 42-48.
[11] 王荣国, 王进美. 纺织品抗菌剂及其整理方法[J]. 合成纤维, 2021, 50(8): 24-26, 37.
WANG Rongguo, WANG Jinmei. Textile antibacterial agent and its finishing method[J]. Synthetic Fiber in China, 2021, 50(8): 24-26, 37.
[12] SHANG Changyu, BU Junyu, SONG Cui. Preparation, antimicrobial properties under different light sources, mechanisms and applications of TiO2: a review[J]. Journal Citation Reports, 2022, 15(17): 1-25.
[13] 潘琴, 郭晓玲, 曹陈华, 等. 银氮共掺杂纳米TiO2光催化抗菌剂的制备及表征[J]. 上海纺织科技, 2021, 49(4): 55-58.
PAN Qin, GUO Xiaoling, CAO Chenhua. Preparation and characterization of silver-nitrogen co-doped nano-TiO2 photocatalytic antibacterial agent[J]. Shanghai Textile Science & Technology, 2021, 49(4): 55-58.
[14] 魏元博, 王安琪. 纺织用有机抗菌剂的研究进展[J]. 山东化工, 2022, 51(11): 113-114, 117.
WEI Yuanbo, WANG Anqi. Research progress of organic antibacterial agents for textile[J]. Shandong Chemical Industry, 2022, 51(11): 113-114, 117.
[15] SAIDIN Syafiqah, JUMAT Mohamad Amin, AMIN Nur Ain Atiqah Mohd. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application[J]. Materials Science & Engineering C, 2021.DOI: 10.1016/j.msec.2020.111382.
[16] 刘永龙, 甘智豪, 林家洪. 银系抗菌剂的研究进展[J]. 中国洗涤用品工业, 2020(Z1): 202-207.
LIU Yonglong, GAN Zhihao, LIN Jiahong. Research progress of silver-based antimicrobials[J]. China's Laundry Products Industry, 2020(Z1): 202-207.
[17] 崔继方, 吴卫华. 银系无机抗菌剂的发展及应用研究[J]. 陶瓷, 2016(9): 9-12.
CUI Jifang, WU Weihua. Development and application research of silver-based inorganic antimicrobials[J]. Ceramics, 2016 (9): 9-12.
[18] ATACAN Keziban, GUY Nuray, OZACAR Mahmut. Recent advances in photocatalytic coatings for antimicrobial surfaces[J]. Journal Citation Reports, 2022. DOI: 10.1016/j.coche.2021.100777.
[19] 李媛, 韩玲珏, 王玥. 光催化抗菌剂在医用抗菌方面的应用进展[J]. 中国材料进展, 2023, 42(2): 144-154.
LI Yuan, HAN Lingyu, WANG Yue. Application progress of photocatalyticantibacterial agents in medical antibacterial[J]. Chinese Materials Progress, 2023, 42(2): 144-154.
[20] 王佳赫, 刘大勇, 刘伟, 等. 纳米TiO2光催化抗菌应用的研究进展[J]. 应用化学, 2022, 39(4): 629-646.
doi: 10.19894/j.issn.1000-0518.210483
WANG Jiahe, LIU Dayong, LIU Wei, et al. Research progress in photocatalytic antibacterial applications of nano-TiO2[J]. Applied Chemistry, 2022, 39(4): 629-646.
[1] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[2] 马逸平, 樊武厚, 胡晓, 王斌, 李林华, 梁娟, 吴晋川, 廖正科. 耐久型水性杂化无氟防水剂的制备及其性能[J]. 纺织学报, 2024, 45(06): 113-119.
[3] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[4] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[5] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[6] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[7] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[8] 刘欣宇, 李剑浩, 王震, 沈军炎, 杨雷. 复合型无氟聚丙烯酸酯乳液的制备及其防水性能[J]. 纺织学报, 2023, 44(04): 124-131.
[9] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[10] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[11] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[12] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[13] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[14] 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205.
[15] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!