纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 134-141.doi: 10.13475/j.fzxb.20230703201

• 染整工程 • 上一篇    下一篇

金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解

张诗雨1, 姚依婷2, 董晨珊1, 张如全1,2, 杨红军1,3, 顾绍金1,3, 黄菁菁1,2(), 杜杰毫1,3   

  1. 1.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    3.武汉纺织大学 材料科学与工程学院, 湖北 武汉 430200
  • 收稿日期:2023-07-14 修回日期:2024-03-04 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 黄菁菁(1981—),女,副教授,博士。主要研究方向为功能纤维材料。E-mail:jingjing_h2004@163.com
  • 作者简介:张诗雨(1996—),女,硕士。主要研究方向为功能非织造材料。
  • 基金资助:
    湖北省自然科学基金项目(2022CFC073);湖北省重点研发项目(2022BAD015)

Metal-organic frameworks/polypropylene fiber-based composite for rapid degradation of chemical warfare agent simulants

ZHANG Shiyu1, YAO Yiting2, DONG Chenshan1, ZHANG Ruquan1,2, YANG Hongjun1,3, GU Shaojin1,3, HUANG Jingjing1,2(), DU Jiehao1,3   

  1. 1. Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. College of Materials Science and Engineering, Wuhan Textile University,Wuhan, Hubei 430200, China
  • Received:2023-07-14 Revised:2024-03-04 Published:2024-06-15 Online:2024-06-15

摘要:

为将金属有机框架(MOFs)均匀且稳固地固定在纤维材料表面,创造出柔软且具备自净化防护面料,采用单宁酸-3-氨丙基三乙氧基硅烷(TA-APTES)涂层改性的聚丙烯(PP)非织造布作为载体,通过原位生长法制备高MOFs负载量的纤维基复合材料。借助扫描电子显微镜、红外光谱仪、X-射线衍射仪、X-射线光电子能谱仪等手段对复合材料的表面形貌、组成和化学结构进行表征,并对复合材料的MOFs负载量和表面浸润性进行了分析。结果表明:TA-APTES涂层能够显著提高复合材料中MOFs的负载量,可达20.96%;并且有效提高复合材料的表面湿润性,从而提高其在水溶液中的催化降解效率,实现快速降解化学战剂模拟物4-硝基苯磷酸二甲酯(DMNP),在30 min左右即可实现100%的转化率,其降解半衰期短(4.8 min)。

关键词: 金属有机框架, 化学战剂, 催化降解, 原位生长法, 涂层改性, 聚丙烯非织造布

Abstract:

Objective Metal-organic frameworks (MOFs) possess an exceptionally high active specific surface area and exhibit structural and functional diversity, among other characteristics. Studies have shown that MOFs have demonstrated effective degradation of chemical warfare agents. However, the crystal morphology of MOFs powders limits their practical application in catalytic degradation processes. To address this issue, the utilization of a coating modification technique becomes crucial. This technique leverages the adhesion and secondary reactivity of hydrophilic modified coatings to facilitate the in-situ growth of MOFs crystals on the modified polypropylene (PP) surface. This research aims to boost the MOFs loading on the substrate and improve the stability of the MOFs. Overall, this method is significant for developing textiles tailored for the rapid removal of chemical warfare agent simulants.

Method PP nonwovens were immersed in a mixed solution of tannic acid (TA) and aminopropyltriethoxysilane (APTES) to prepare TA-APTES coating modified PP nonwovens. The modified PP with the TA-APTES coating was sequentially submerged in the solution of zirconium tetrachloride and 2-aminoterephthalic acid, enabling the in-situ growth of zirconia-based metal-organic frameworks (UiO-66-NH2) on the PP surface to prepare a PP/TA-APTES/UiO-66-NH2 (PTAU) fiber-based composite. The surface morphology, composition, and structure of the composite were characterized by scanning electron microscopy, Fourier transform infrared, X-ray diffraction and X-ray photoelectron spectroscopy(XPS), respectively. The loading of MOFs in the composite was characterized by inductively coupled plasma optical emission spectrometry and the wettability of the composite was characterized by static water contact angle test. Moreover, the degradation performance of the composite on chemical warfare agent simulants was evaluated.

Results Compared with the unmodified PP, the surface of PP composite modified by TA-APTES coating became rough which is conducive to the growth of MOFs on the surface of PP. The infrared spectrum showed the characteristic peaks of the modified TA-APTES and UiO-66-NH2. The XRD pattern of the PP after TA-APTES coating confirmed that the UiO-66-NH2 crystalline form remained unchanged in the composite. The XPS characterization revealed the elemental valence composition of the composite surface before and after the reaction. The thermogravimetric testing suggested that the final residual mass percentage of the original PP nonwovens was 1.3%, while the residual mass percentage of PTAU composite was 17.4%, indicating that the thermal stability performance of the treated PP was improved. These results showed that the MOFs was successfully modified on the surface of TA-APTES coating on PP. Additionally, TA-APTES coatings significantly changed the wettability of PP composites and enhanced the loading capacity of MOFs on the composite surface to 20.96%. The UV spectrum of dimethyl p-nitrophenyl phosphate (DMNP) degradation catalyzed by composite demonstrated that the characteristic peak of DMNP at 270 nm gradually decreases and the characteristic peak of the hydrolysis product p-nitrophenol at 400 nm gradually increases, and the degradation rate of the composite reached 100% after 30 min. The half-life of degradation of PTAU composite was 4.8 min.

Conclusion TA-APTES coating was used to modify PP nonwoven to construct the active site of MOF nucleation, which promoted the uniform distribution and robust growth of UiO-66-NH2 on PP surface. The inductively coupled plasma optical emission spectrometry results showed that the loading of UiO-66-NH2 in composite was increased by TA-APTES coating, reaching up to 20.96%. The experimental results demonstrate that TA-APTES coating can effectively improve the surface wettability of PP composite material from hydrophobic to hydrophilic, and greatly improving its catalytic degradation efficiency in aqueous solution. The catalytic degradation experiment showed that the catalytic degradation efficiency of PTAU composite was further improved, the conversion rate reached 100% in approximately 30 minutes, and the degradation half-life was about 4.8 min.

Key words: metal-organic framework, chemical warfare agent, catalytic degradation, in situ growth method, coating modification, polypropylene nonwoven

中图分类号: 

  • TS102.54

图1

金属有机框架/聚丙烯纤维基复合材料制备示意图"

图2

原PP非织造布与不同复合材料的扫描电镜照片"

图3

UiO-66-NH2与原PP非织造布及不同处理PP复合材料的红外光谱图"

图4

UiO-66-NH2与原PP非织造布及不同处理PP复合材料的X射线衍射图"

图5

原PP非织造布和不同处理PP复合材料的XPS全谱图"

图6

UiO-66-NH2与原PP非织造布及不同处理PP复合材料的热重曲线"

图7

原PP非织造布与不同处理PP复合材料的水接触角及其在空气中与水下浸润性的光学照片"

图8

3 μL水滴浸润PTA和PTAU的动态过程"

图9

PTAU复合材料催化降解DMNP性能"

表1

不同催化体系催化降解DMNP性能"

样品名称 动力学拟合曲线斜率 t1/2 /min
TA -0.000 7
PUN -0.005 6 123
PTAU -0.145 1 4.8
UiO-66-NH2 -0.127 9 5.4
PP/ZnO/UiO-66-NH2 -0.069 6 10
PP/TiO2/UiO-66-NH2 -0.046 5 15
PP/Al2O3/UiO-66-NH2 -0.008 9 78

图10

DMNP的催化降解机制"

[1] 周永, 汤泉, 成琳. 神经性化学战剂防护材料研究进展[J]. 江西理工大学学报, 2012, 33(5):11-16, 32.
ZHOU Yong, TANG Quan, CHENG Lin. Study on the protective materials against nerve chemical warfare agents[J]. Journal of Jiangxi University of Science and Technology, 2012, 33(5): 11-16, 32.
[2] FURUKAWA Hiroyasu, KO Nakeun, GO Yong Bok, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329: 424-428.
doi: 10.1126/science.1192160 pmid: 20595583
[3] FARHA Omar K, ERYAZICI Ibrahim, JEONG Nak Cheon, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?[J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021.
doi: 10.1021/ja3055639 pmid: 22906112
[4] 李庆, 樊增禄, 张洛红, 等. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019, 40(2):141-146.
LI Qing, FAN Zenglu, ZHANG Luohong, et al. Preferential and recyclable adsorption of dyes from waterby Zr-organic skeleton[J]. Journal of Textile Research, 2019, 40(2): 141-146.
[5] 禹凡, 郑涛, 汤涛, 等. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(3):139-145.
YU Fan, ZHENG Tao, TANG Tao, et al. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater[J]. Journal of Textile Research, 2022, 43(3): 139-145.
[6] ZHAO Junjie, LEE Dennis T, YAGA Robert W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie International Edition, 2016, 55(42): 13224-13228.
[7] LEE Dennis T, ZHAO Junjie, OLDHAM Christopher J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants[J]. ACS Applied Materials and Interfaces, 2017, 9(51): 44847-44855.
[8] WANG Zhenxing, HAN Mingcai, ZHANG Jin, et al. Designing preferable functional materials based on the secondary reactions of the hierarchical tannic acid(TA)-aminopropyltriethoxysilane (APTES) coating[J]. Chemical Engineering Journal, 2019, 360: 299-312.
doi: 10.1016/j.cej.2018.11.144
[9] 韩明才. 单宁酸(TA)-3-氨丙基三乙氧基硅烷(APTES)涂层的功能化及其在水处理中的应用研究[D]. 南昌: 南昌大学, 2020, 22-57.
HAN Mingcai. Functionalization of tannic acid (TA)-3-aminopropyl triethoxysilane (APTES) coating and its application in water treatment[D]. Nanchang: Nanchang University, 2020: 22-57.
[10] MA Kaikai, ISLAMOGLU Timur, CHEN Zhijie, et al. Scalable and template-free aqueous synthesis of zirconium-based metal-organic framework coating on textile fiber[J]. Journal of the American Chemical Society, 2019, 141(39): 15626-15633.
doi: 10.1021/jacs.9b07301 pmid: 31532665
[11] ZHANG Shiyu, DONG Chenshan, WANG Yilun, et al. Construction of MOF-loaded polypropylene nonwoven fabrics for fast catalytic hydrolysis of chemical warfare agent simulants[J]. Materials Letters, 2022, 326: 1-4.
[12] 张诗雨. 锆基金属有机框架纤维复合材料制备及催化降解性能研究[D]. 武汉: 武汉纺织大学, 2021: 34-55.
ZHANG Shiyu. Preparation and catalytic degradation performance of fiber composites of zirconium-based metal-organic frameworks[D]. Wuhan: Wuhan Textile University, 2021: 34-55.
[13] YAO Aonan, JIAO Xiuling, CHEN Dairong, et al. Photothermally enhanced detoxification of chemical warfare agent simulants using bioinspired core-shell dopamine-melanin@metal-organic frameworks and their fabrics[J]. ACS Applied Materials and Interfaces, 2019, 11(8): 7927-7935.
[14] CHEN Mingfei, TU Yingxue, WU Songhai, et al. Preparation of UiO-66-NH2@PDA under water system for chemical warfare agents degradation[J]. Materials, 2021, 14: 1-10.
[1] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[2] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[3] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
[4] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[5] 刘其霞, 张天昊, 季涛, 葛建龙, 单浩如. 锆基金属有机骨架材料/活性碳纤维复合材料的制备及其降解性能[J]. 纺织学报, 2023, 44(09): 134-143.
[6] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[7] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[8] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[9] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[10] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[11] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[12] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[13] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[14] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[15] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!