纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 16-22.doi: 10.13475/j.fzxb.20221203601
胥家辉1, 郭肖青1, 王伟1, 王怀芳1, 张传杰1,2,3(), 宫兆庆3
XU Jiahui1, GUO Xiaoqing1, WANG Wei1, WANG Huaifang1, ZHANG Chuanjie1,2,3(), GONG Zhaoqing3
摘要:
海藻纤维的断裂强度低、伸长率差一直是限制其广泛应用的主要原因。针对该问题,对海藻纤维进行改性,将纳米蒙脱土(MMT)与海藻酸钠共混制备纺丝原液,以CaCl2为凝固浴,通过湿法纺丝法制备海藻酸纳/纳米蒙脱土纤维,借助透射电子显微镜、扫描电子显微镜、红外光谱仪、X射线衍射仪和热重分析仪等对其微观形貌及结构进行表征与分析,通过单纤维强力仪测试其断裂强度、断裂伸长率等物理力学性能及热稳定性,研究蒙脱土溶胀时间及添加量对其性能的影响。结果表明:当MMT溶胀120 h、质量分数为0.1%时,MMT在纺丝液中分布较为均匀;与纯海藻纤维的力学性能相比,改性后纤维的断裂强度由1.32 cN/dtex提高到3.01 cN/dtex,提高率高达228%;断裂伸长率由4.67%增加到10.07%,同时MMT的加入没有明显改变海藻纤维的化学结构与结晶结构,对纤维的热稳定性能有一定的提高。
中图分类号:
[1] | 王锐, 莫小慧, 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014, 35 (2): 145-152. |
WANG Rui, MO Xiaohui, WANG Xiaodong. Application status and development trend of alginate fiber[J]. Journal of Textile Research, 2014, 35 (2): 145-152. | |
[2] | 秦益民. 海藻酸盐纤维的生物活性和应用功效[J]. 纺织学报, 2018, 39 (4): 175-180. |
QIN Yimin. Biological activity and application efficacy of alginate fiber[J]. Journal of Textile Research, 2018, 39 (4): 175-180. | |
[3] |
刘秀龙, 王云仪. 海藻纤维的制备及其在纺织服装中的应用研究进展[J]. 现代纺织技术, 2022, 30(1): 26-35.
doi: 10.19398/j.att.202103041 |
LIU Xiulong, WANG Yunyi. Research progress in the preparation of seaweed fiber and its application in textiles and clothing[J]. Modern Textile Technology, 2022, 30 (1): 26-35. | |
[4] | 郭静, 陈前赫. 海藻纤维制备技术研究进展[J]. 合成纤维工业, 2011, 34 (5): 41-44. |
GUO Jing, CHEN Qianhe. Research progress in preparation technology of seaweed fiber[J]. Synthetic Fiber Industry, 2011, 34 (5): 41-44. | |
[5] | 雷明月. SA纤维的耐盐改性及性能研究[D]. 武汉: 武汉纺织大学, 2018:33-36. |
LEI Mingyue. Study on salt resistance modification and performance of SA fiber[D]. Wuhan: Wuhan Textile University, 2018:33-36. | |
[6] | WANG Y, CHEN H, CUI L, et al. Toughen and strengthen alginate fiber by incorporation of polyethylene glycol grafted cellulose nanocrystals[J]. Cellulose, 2022, 29 (9): 5021-5035. |
[7] |
FILIZ Tezcan, EBRU Günister, GONUL Ozen, et al. Biocomposite films based on alginate and organically modified clay[J]. International Journal of Biological Macromolecules, 2012, 50 (4): 1165-1168.
doi: 10.1016/j.ijbiomac.2012.01.006 pmid: 22269346 |
[8] | TAN L, YAO T, XIA Y, et al. Preparation and characterization of calcium alginate/nano-TiO2 blend fiber[J]. Synthetic Fiber Industry, 2013, 36 (2): 6-8. |
[9] | 党丹旸, 崔灵燕, 王亮, 等. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41 (2): 1-6. |
DANG Danyang, CUI Lingyan, WANG Liang, et al. Preparation, structure and properties of cellulose nanofiber/nano montmorillonite composite aerogel[J]. Journal of Textile Research, 2020, 41 (2): 1-6. | |
[10] | 王芳, 马刚, 于鹏达, 等. 芳纶基环氧树脂/MMT复合材料的制备及性能[J]. 热固性树脂, 2022, 37(4): 9-14. |
WANG Fang, MA Gang, YU Pengda, et al. Preparation and properties of aramid based epoxy resin/MMT composites[J]. Thermosetting Resin, 2022, 37(4): 9-14. | |
[11] | SU X, CHEN B. Tough resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels[J]. Carbohydr Polym, 2018, 197: 497-507. |
[12] | 王风军. SA/无机纳米复合纤维的制备与性能研究[D]. 青岛: 青岛大学, 2012:39-42. |
WANG Fengjun. Study on the preparation and properties of SA/inorganic nanocomposite fiber[D]. Qingdao: Qingdao University, 2012:39-42. | |
[13] |
ALI Olad, MAHYAR Pourkhiyabi, HAMED Gharekhani, et al. Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics[J]. Carbohydrate Polymers, 2018, 190: 295-306.
doi: S0144-8617(18)30256-X pmid: 29628250 |
[14] | BRAHMI Mohamed, ESSIFI Kamal, ELBACHIRI Ali, et al. Adsorp-tion of sodium alginate onto sodium montmorillonite[J]. Materials Today: Proceedings, 2021, 45(P8): 7785-7793. |
[15] |
MITHILESH Yadav, KYONG Yop Rhee. Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior[J]. Carbohydrate Polymers, 2012, 90(1): 165-173.
doi: 10.1016/j.carbpol.2012.05.010 pmid: 24751026 |
[16] | YAN M, SHI J, TANG S, et al. Strengthening and toughening sodium alginate fibers using a dynamically cross-linked network of inorganic nanoparticles and sodium alginate through the hydrogen bonding stra-tegy[J]. New Journal of Chemistry, 2021, 45(23): 10362-10372. |
[1] | 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32. |
[2] | 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62. |
[3] | 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31. |
[4] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
[5] | 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63. |
[6] | 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69. |
[7] | 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35. |
[8] | 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20. |
[9] | 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23. |
[10] | 田星, 沙源, 王兵兵, 夏延致. 乌贼墨黑色素着色海藻纤维的制备与表征[J]. 纺织学报, 2021, 42(10): 22-26. |
[11] | 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40. |
[12] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[13] | 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55. |
[14] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[15] | 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40. |
|