纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 186-192.doi: 10.13475/j.fzxb.20230404401

• 机械与设备 • 上一篇    下一篇

空间连杆引纬机构的刚柔耦合磨损分析

李博1,2(), 刘旭柠1,2, 郭杰1,2, 胡凯3, 畅博彦1,2, 魏展1,2   

  1. 1.天津工业大学 天津市现代机电装备技术重点实验室, 天津 300387
    2.天津工业大学 航空航天学院, 天津 300387
    3.平高集团储能科技有限公司, 天津 300300
  • 收稿日期:2023-04-24 修回日期:2024-03-08 出版日期:2024-06-15 发布日期:2024-06-15
  • 作者简介:李博(1983—),男,讲师,博士生。主要研究方向为纺织机械动力学。E-mail:libo@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金项目(52005368)

Rigid-flexible coupling wear analysis of spatial linkage weft insertion mechanism

LI Bo1,2(), LIU Xuning1,2, GUO Jie1,2, HU Kai3, CHANG Boyan1,2, WEI Zhan1,2   

  1. 1. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
    2. School of Aeronautics and Space, Tiangong University, Tianjin 300387, China
    3. Pinggao Group Energy Storage Technology Co., Ltd., Tianjin 300300, China
  • Received:2023-04-24 Revised:2024-03-08 Published:2024-06-15 Online:2024-06-15

摘要:

为准确预测空间连杆引纬机构间隙磨损机制,通过结合Lankarani-Nikravesh与Bai碰撞力模型,建立可变刚度与阻尼系数非连续接触碰撞力模型,采用改进的Coulomb摩擦力模型描述含间隙机构旋转铰的切向摩擦力,通过Lagrange方法对系统动力学建模;其次选取空间连杆为柔性化对象,综合Ansys与Adams分析,对空间连杆引纬机构进行刚柔耦合动力学仿真;最后将系统的动态仿真响应结果与Archard模型相结合,求解运动副磨损情况。结果表明:柔性构件可以有效缓解机构间隙碰撞的冲击作用,间隙为0.15 mm条件下,剑头加速度振荡最大幅值缩减53.2%;当间隙升至0.5 mm后,虽磨损范围大幅增加,但间隙磨损深度并未随之大幅提升。

关键词: 引纬机构, 接触碰撞力模型, Coulomb摩擦力模型, 刚柔耦合磨损, 空间连杆

Abstract:

Objective In calculating the wear of the kinematic pair in the spatial linkage weft insertion mechanism with clearance, the role and change process of the clearance in the wear process of the hinge clearance cannot be accurately expressed if simply considering the clearance of the flexible hinge or simply consider the flexible deformation of the rod. Therefore, in order to improve the calculation accuracy of clearance impact wear prediction, the influence of various factors on the system motion output should be considered comprehensively, so as to meet the requirements of high speed, light weight and heavy load of the mechanism and improve the operation accuracy of the mechanism.

Method Firstly, combined with the Lankarani-Nikravesh and Bai model, the variable stiffness and damping discontinuous contact impact force model was established. The improved Coulomb friction model was used to describe the friction between the shaft pin and the sleeve of the rotating hinge with clearance mechanism, and the system dynamics was modeled by Lagrange method. Secondly, the spatial linkage was selected as flexible object, and the rigid-flexible coupling dynamics simulation of the spatial linkage weft insertion mechanism was carried out by combining Ansys and Adams methods. Finally, the dynamic simulation response results of the sys-tem were combined with the Archard model.

Results In the rigid-flexible coupling system, the maximum stress of the spatial linkage was distributed near the rotating pair, and the maximum deformation distribution of the unit displacement was also at the hinge point of the two support frames. As the clearance was increased to r = 0.5 mm, the component flexibility failed to effectively alleviate the speed fluctuation caused by the clearance impact during the process of the rapier head sliding out of the shuttle, while in the weft handover process, the component flexibility effectively slowed down the high-frequency fluctuation of the rapier head acceleration. When the clearance r = 0.15 mm, the relative sliding distance showed a higher value in the two working states of weft handover and rapier head return. When the clearance was increasd to r = 0.5 mm, its maximum value did not increase significantly compared with the clearance r = 0.15 mm, although the sliding distance fluctuates greatly in the whole period. When the clearance r=0.15 mm, the maximum wear depth of the motion pair appeared in the vicinity of the spindle rotation angle, this was the same as that when the clearance r=0.01 mm. When the clearance was increased to r=0.5 mm, a large number of wear occurred in a wear calculation cycle with a much increased frequency. In such a case, the wear range was no longer concentrated on the fixed area, while the maximum wear depth did not show significant increase. With the increase of the clearance of the kinematic pair, the maximum value of the clearance impact force also was increased, and the wear depth was increased with the increase of the impact force under different clearance conditions.

Conclusion Compared with the pure rigid body mechanism, the flexibility of the component has a greater influence on the acceleration of the rapier head, which can prevent the yarn from breaking during the handover of the rapier head to a certain extent. In the high speed running process of the spatial linkage weft insertion mechanism, the relative sliding of the joint components with clearance in the impact process mainly occurs in the 'fast forward' and 'quick return' stages of the rapier head. Under the condition of clearance r = 0.15 mm, the maximum amplitude of the acceleration oscillation of the rapier head is reduced by 53.2%. When the clearance rises to r = 0.5 mm, although the wear range increases significantly, the wear depth of the clearance does not increase significantly.

Key words: weft insertion mechanism, contact impact force model, Coulomb frictional force model, rigid-flexible coupling wear, apatial linkage

中图分类号: 

  • TS103.33

表1

相关参数取值"

参数 取值 参数 取值
空间连杆长度/mm 112 空间连杆质量/kg 1.944
十字摇轴长度/mm 320 十字摇轴质量/kg 2.221
平面连杆长度/mm 400 平面连杆质量/kg 0.490
扇齿轮分度圆直径/mm 435 扇齿轮质量/kg 2.121

图1

空间连杆柔性化过程"

图2

不同间隙与刚柔耦合条件下的剑头速度"

图3

不同间隙刚柔耦合条件下的剑头加速度"

图4

运动副相对滑动距离变化曲线"

图5

不同间隙下磨损深度随碰撞力变化曲线"

图6

不同间隙下运动副磨损情况"

表2

刚柔耦合模型磨损预测数据"

r=0.01 mm r=0.15 mm r=0.5 mm
转角/
(°)
磨损深
度/μm
转角/
(°)
磨损深
度/μm
转角/
(°)
磨损深
度/μm
0.099 0.000 00 0.125 0.000 00 3.770 0.000 00
20.845 0.000 03 23.920 0.007 53 12.151 0.247 49
39.981 0.000 23 42.145 0.000 07 22.692 0.016 44
59.728 0.011 36 49.346 0.000 37 44.378 1.815 92
77.490 0.076 21 53.276 0.001 65 91.027 2.238 23
87.705 0.118 52 88.822 2.600 87 113.016 0.868 98
108.191 0.086 70 91.210 2.348 44 130.370 1.457 10
123.445 0.038 23 110.749 1.412 12 148.903 0.138 05
139.560 0.007 05 130.464 0.100 54 170.179 1.271 05
156.201 0.000 60 147.427 0.001 84 186.922 0.000 00
173.937 0.000 00 151.597 0.001 59 206.909 1.536 17
194.609 0.000 10 172.509 0.021 56 248.500 2.078 45
212.728 0.002 78 202.990 0.011 41 288.347 3.268 88
230.171 0.023 92 220.009 0.009 32 302.968 0.431 63
253.786 0.143 28 254.972 2.896 62 323.495 2.025 23
280.126 0.069 41 258.018 3.227 28 334.922 0.372 63
294.816 0.026 93 287.478 0.777 27 336.627 0.035 98
313.374 0.003 67 305.652 0.028 89 342.091 0.038 31
335.390 0.002 24 329.571 0.012 93 358.034 1.747 63
359.998 0.010 71 356.162 0.009 74 359.999 1.863 65
[1] 张雷, 贺虎, 孔佳元. 含间隙和尺寸误差空间连杆引纬机构运动精度综合分析[J]. 纺织学报, 2016, 37(6): 124-129, 135.
ZHANG Lei, HE Hu, KONG Jiayuan. Comprehensive analysis of motion accuracy for spatial linkage weft insertion mechanism with clearance and dimensional errors[J]. Journal of Textile Research, 2016, 37(6): 124-129, 135.
[2] 余克龙, 张雷. 基于变曲柄材料的空间四杆引纬机构柔性动力学仿真研究[J]. 机械科学与技术, 2013, 32(10): 1505-1508.
YU Kelong, ZHANG Lei. Flexible dynamics simulation for space four bar linkage weft insertion mechanism based on variable axle diameter of sector gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(10): 1505-1508.
[3] 韩钊, 连子豪, 郑恩来, 等. 含非规则粗糙间隙表面铰链关节的平面柔性多连杆传动系统动态误差与运动副磨损周期行为分析[J]. 机械工程学报, 2022, 58(19): 115-129.
doi: 10.3901/JME.2022.19.115
HAN Zhao, LIAN Zihao, ZHENG Enlai, et al. Analysis of dynamic error and wear cycle behavior of kinematic pair for planar flexible multi-link transmission system including revolute clearance joints with irregular rough surfaces[J]. Journal of Mechanical Engineering, 2022, 58(19): 115-129.
doi: 10.3901/JME.2022.19.115
[4] TING K, HSU K, YU Z T, et al. Clearance-induced output position uncertainty of planar linkages with revolute and prismatic joints[J]. Mechanism and Machine Theory, 2017, 111: 66-75.
[5] QIAN M, QIN Z, YAN S, et al. A comprehensive method for the contact detection of a translational clearance joint and dynamic response after its application in a crank-slider mechanism[J]. Mechanism and Machine Theory, 2020, 145: 1-19.
[6] 李博, 胡凯, 金国光, 等. 空间连杆引纬机构柔性铰间隙动态特性研究[J]. 纺织学报, 2021, 42(1): 145-153.
LI Bo, HU Kai, JIN Guoguang, et al. Research on dynamic characteristics of spatial-linkage weft insertion mechanism considering flexible hinge clearance[J]. Journal of Textile Research, 2021, 42(1): 145-153.
[7] BAI Z F, SUN Y. A study on dynamics of planar multibody mechanical systems with multiple revolute clearance joints[J]. European Journal of Mechanics-A/Solids, 2016, 60(5): 95-111.
[8] RAMIN A, ZHAO K. Micromechanics of material detachment during adhesive wear: a numerical assessment of Archard's model[J]. Wear, 2021, 476: 1-6.
[9] SOHA B, PIERRE A, SIEGFRIED F. Modeling contact oxygenation and adhesive wear extension in axisymmetric flat circular fretting interfaces[J]. Wear, 2021, 477: 1-13.
[10] WU C H, ZHANG L C, QU P L, et al. Surface texture transfer in skin-pass rolling with the effect of roll sur-face wear[J]. Wear, 2021, 476: 12-37.
[11] DANIEL S, MARTIN B, BAS S, et al. A novel model-based approach for the prediction of wear in cold rolling[J]. Wear, 2017, 376/377: 1245-1259.
[12] TAN H Y, HU Y J, LI L. Effect of friction on the dynamic analysis of slider-crank mechanism with clearance joint[J]. International Journal of Non-Linear Mechanics, 2019, 115(6): 20-40.
[13] CHEN X, JIANG S, WANG S, et al. Dynamics analysis of planar multi-DOF mechanism with multiple revolute clearances and chaos identification of revolute clearance joints[J]. Multibody System Dynamics, 2019, 47(4): 317-345.
[14] JIANG S, CHEN X L. Reducing undesirable effects of clearances on dynamic and wear of planar multi-link mechanism[J]. Nonlinear Dyn amics, 2020, 5(20): 9-29.
[15] BAPTISTA A, SILVA F J G, PINTO G, et al. Influence of the ball surface texture in the dragging of abrasive particles on micro-abrasion wear tests[J]. Wear, 2021, 476: 19-43.
[16] XU L X, HAN Y C, DONG Q B, et al. An approach for modelling a clearance revolute joint with a constantly updating wear profile in a multibody system simulation and experiment[J]. Multibody System Dynamics, 2018, 6(55): 1-22.
[17] MAKOTO A, TAKAFUMI K. Numerical simulation model for the competition between short crack propagation and wear in the wheel tread[J]. Wear, 2020, 448/449: 89-114.
[1] 喻陈楠, 贾江鸣, 陈之威, 陈建能, 陈加友, 陆文韬. 新型剑杆织机引纬机构的反求建模与运动学仿真[J]. 纺织学报, 2021, 42(01): 154-161.
[2] 李博, 胡凯, 金国光, 魏展, 畅博彦. 空间连杆引纬机构柔性铰间隙动态特性研究[J]. 纺织学报, 2021, 42(01): 145-153.
[3] 魏展, 金国光, 李博, 宋艳艳, 路春辉. 剑杆织机打纬凸轮接触碰撞力建模与仿真[J]. 纺织学报, 2020, 41(03): 154-159.
[4] 周香琴, 顾叶琴, 吴震宇. 可简便调幅的剑杆织机引纬机构参数特征[J]. 纺织学报, 2019, 40(09): 173-179.
[5] 徐巧 闫文军 梅顺齐 张智明. 基于电磁发射的超宽门幅自动织机引纬机构设计方法[J]. 纺织学报, 2018, 39(07): 130-136.
[6] 张雷 苏宗帅 季祖鹏 顾萍萍. 共轭凸轮引纬机构的凸轮轮廓线光顺与反求[J]. 纺织学报, 2017, 38(12): 141-149.
[7] 张雷 孔佳元 雷炳杰 李杨. 变导程螺旋引纬机构剑杆位移曲线的设计[J]. 纺织学报, 2017, 38(04): 121-126.
[8] 张雷 贺虎 孔佳元. 含间隙和尺寸误差空间连杆引纬机构运动精度综合分析[J]. 纺织学报, 2016, 37(06): 124-129.
[9] 张雷 余克龙 陈少钟 张吉峰. 基于ANSYS和ADAMS空间四连杆引纬机构的柔性动力学仿真[J]. 纺织学报, 2013, 34(5): 116-120.
[10] 陈建能;赵雄;张国凤;赵匀. 基于改进NSGA-Π算法的新型引纬机构的参数优化[J]. 纺织学报, 2008, 29(1): 110-113.
[11] 周琪甦;沈世德. 新型机织小样机引纬机构设计[J]. 纺织学报, 2007, 28(2): 112-114.
[12] 郑智毓;李加林;陶永政. G6300型剑杆织机引纬机构分析[J]. 纺织学报, 2005, 26(6): 91-92.
[13] 李克让;陈明. 剑杆引纬机构的传动规律研究[J]. 纺织学报, 2004, 25(01): 44-45.
[14] 竺志超;李志祥. 引纬机构的遗传算法优化设计[J]. 纺织学报, 2002, 23(03): 34-35.
[15] 黄晨;李克让;陈明. 正置空间曲柄摇杆引纬机构的运动规律研究[J]. 纺织学报, 2001, 22(02): 7-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!