纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 32-38.doi: 10.13475/j.fzxb.20230204401

• 纤维材料 • 上一篇    下一篇

低红外发射率控温热红外伪装材料的制备与性能

时吉磊1,2, 陈廷彬1,2, 付少海1,2, 张丽平1,2()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2023-02-20 修回日期:2023-11-16 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 张丽平(1985—),女,教授,博士。主要研究方向为功能纺织材料。E-mail:zhangliping0328@163.com
  • 作者简介:时吉磊(1998—),男,硕士生。主要研究方向为隔热与红外隐身材料。
  • 基金资助:
    江苏省自然科学基金项目(BK20211240);江南大学大学生创新创业训练项目(202410295195Y)

Preparation and properties of low infrared emissivity temperature-controlled thermal infrared camouflage materials

SHI Jilei1,2, CHEN Tingbin1,2, FU Shaohai1,2, ZHANG Liping1,2()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2023-02-20 Revised:2023-11-16 Published:2024-06-15 Online:2024-06-15

摘要:

目前,仅从阻隔目标热量散发或降低表面红外发射率单方面入手很难达到理想的热红外伪装效果。针对这一问题,通过在聚丙烯腈静电纺丝液中混合相变材料聚乙二醇和性价比较高的铁纳米粒子,采用静电纺丝技术制备了一种外表面具有低红外发射率、底层具有控温功能的复合纤维膜材料,分析了复合纤维膜的表观形貌、化学及物相结构、热学性能、红外发射率和控温性能,研究了复合材料的红外隐身性能。结果表明:当聚乙二醇4000和聚乙二醇1000投料比不同时,可得到相变温度在31.5~40.9 ℃之间的系列相变纤维膜;复合纤维膜的红外发射率最低为0.69,在55 ℃热台上能够产生12 ℃的表面温度差,最大可产生22.4 ℃的辐射温度差,与环境温度相比最低具有1.9 ℃的辐射温度差,使目标在红外热成像中与环境辐射颜色一致。

关键词: 聚丙烯腈, 聚乙二醇, 铁纳米粒子, 红外隐身, 静电纺丝, 复合纤维膜, 相变温度, 红外发射率

Abstract:

Objective Infrared (IR) stealth is essential in modern military. With the rapid development of infrared detection technology, effectively hiding targets and rendering them invisible to thermal infrared detectors have been great challenges. Infrared stealth effect is affected by both temperature and infrared emissivity, but most of the previous studies focused on a single factor, which limits the effectiveness of the products. In order to achieve better infrared stealth effect, a composite fiber membrane material was prepared with low infrared emissivity on the outer surface and temperature control function inside.

Method The continuous electrospinning method was used to prepare the composite fiber membrane with the effect of controlling temperature and moderating infrared emissivity. By controlling the mass ratio of polyethylene glycol(PEG1000 and PEG4000) and the amount of nano-iron particles, the fiber membrane with different phase change temperature and infrared emissivity was obtained. The mass ratio between PEG4000 and PEG1000 was 2∶1, 3∶2,1∶1 and 2∶3, and nano-iron particles accounted for 10%, 20%, and 30% of the PAN quality, respectively. The apparent morphology, chemical and phase structure, thermal properties and infrared emissivity of the composite fiber membranes were studied. The infrared stealth properties of composites were investigated.

Results The surface of pure PAN fibers is smooth and the diameter distribution is uniform. The phase change fibers doped with polyethylene glycol became rough and wrinkled, and some fibers exhibited a fine groove-like morphology, which is, however, regular without showing polymer intorface separation. The composite fiber was well formed and showed certain dimensional stability. The infrared spectrum demonstrated that PAN(polyacrylonitrile) and PEG(Polyethylene glycol) have good binding and compatibility, which is consistent with the results of SEM. With the different mass ratios of PEG4000 and PEG1000, the phase transition temperature was between 31.5-40 ℃, with a regulation range of about 10 ℃. The phase change enthalpy and phase change temperature of fiber membrane PCM1(the mass ratio between PEG4000 and PEG1000 is 2∶1) changed less more than 2 % after 40 thermal cycles, indicating good energy storage stability. The temperature control effect of phase change fiber membranes with different thicknesses was analyzed. The phase change fiber membrane PCM1 with 0.9 mm and 1.2 mm thicknesses was placed on a 55 ℃ hot stage. When the surface temperature of PCM1 reached about 40 ℃, the heating rate was significantly slowed down, which was consistent with its phase change endothermic temperature. The temperature rise rate of 0.9 mm and 1.2 mm thick PCM1 fiber membranes became very slow after 6 min, and the actual temperature difference with the surface of the hot stage was 7 ℃ and 12 ℃, respectively.This is because the relatively thick fiber membrane means more phase change materials, which can absorb more heat and form better temperature control effect. The infrared emissivity of PAN, 0.1Fe/PCM1,0.2Fe/PCM1 and 0.3Fe/PCM1(nano-iron accounts for 0%, 10%, 20% and 30% of the PAN quality, respectively) were 0.9,0.82,0.69 and 0.75, respectively. The infrared emissivity of the fiber membrane decreased after the addition of nano-iron, and reached the lowest when the doping amount was 20 %. In the absence of sunlight, it is equivalent to the environment of grass or rock (infrared emissivity 0.65-0.75). By placing 0.2Fe/PCM1 on the hot stage, it can be seen from the infrared thermal imaging that it is similar to the radiation color of the environment and has infrared stealth effect.

Conclusion Through multi-component design and structural construction, a composite material with low infrared emissivity on the outer surface and internal insulation and temperature control functions has been prepared. The synergistic effect achieves the infrared camouflage function of the material, and to some extent overcomes the limitation of achieving infrared camouflage from a single aspect. It is hoped that it can provide a new way of thinking for the research of infrared stealth materials.

Key words: polyacrylonitrile, polyethylene glycol, iron nanoparticle, infrared stealth, electrostatic spinning, composite cellulosic membrane, phase-transition temperature, infrared emissivity

中图分类号: 

  • TS101.8

图1

静电纺纳米纤维膜的扫描电镜照片"

图2

PAN和相变纤维膜PCMx的红外光谱图"

图3

复合纤维膜的XRD谱图"

表1

相变纤维膜的热学参数"

样品
名称
熔化 结晶
Ton/
Tm/
Te/
ΔHm/
(kJ·kg-1)
Ton/
Tm/
Te/
ΔHm/
(kJ·kg-1)
PCM1 40.9 52.3 57.0 57.8 24.3 17.0 8.1 53.5
PCM2 37.5 49.6 54.8 54.4 19.1 14.3 6.0 54.0
PCM3 33.3 46.6 51.7 51.0 19.6 11.8 3.1 50.0
PCM4 31.5 41.9 46.5 40.0 17.5 10.9 3.7 36.0

图4

相变纤维膜的DSC曲线"

图5

相变纤维PCM1的DSC循环曲线"

图6

不同厚度相变纤维膜的时间-温度曲线"

图7

复合纤维膜的表面温度和辐射温度随时间变化曲线"

图8

纤维膜的红外热成像图"

[1] 谌玉莲, 李春海. 红外隐身材料研究进展[J]. 红外技术, 2021, 43(4): 312-323.
CHEN Yulian, LI Chunhai. Research progress of infrared stealth materials[J]. Infrared Technology, 2021, 43(4): 312-323.
[2] 何岷洪. 红外隐身材料的制备及红外发射率性能研究[D]. 太原: 中北大学, 2013:8-10.
HE Minhong. Preparation of infrared stealth materials and study on infrared emissivity[D]. Taiyuan: North University of China, 2013:8-10.
[3] KE Weidong, WU Xiuwen, ZHANG Jinlin. In situ polymerization of organic and inorganic phase change microcapsule and enhancement of infrared stealth via nano iron[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI:10.1016/j.colsurfa.2021.127124.
[4] GU Jie, WANG Wei, YU Dan. Temperature control and low infrared emissivity double-shell phase change microcapsules and their application in infrared stealth fabric[J]. Progress in Organic Coatings, 2021. DOI: 10.1016/j.porgcoat.2021.106439.
[5] LYU Jing, LIU Zengwei, WU Xiaohan, et al. Nanofifibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245.
doi: 10.1021/acsnano.8b08913 pmid: 30697999
[6] XU Rui, XIA Xiaomeng, WANG Wei, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A, 2020. DOI: 10.1016/j.colsurfa.2020.124519.
[7] QIN Yushuang, ZHANG Mingji, GUAN Yue, et al. Laser absorption and infrared stealth properties of Al/ATO composites[J]. Ceramics International, 2019, 45(11): 14312-4315.
doi: 10.1016/j.ceramint.2019.04.144
[8] 张伟钢, 徐国跃. 低红外发射率材料研究进展[J]. 红外技术, 2015, 37(5): 361-367.
ZHANG Weigang, XU Guoyue. Research progress of low infrared emissivity materials[J]. Infrared Technology, 2015, 37(5): 361-367.
[9] GUO Shuai, YANG Lei, DAI Bin, et al. Past achievements and future challenges in the development of infrared antireflective and protective coatings[J]. Phys Status Solidi A Appl Mat, 2020. DOI: 10.1002/pssa.202070049.
[10] 叶圣天, 刘朝辉, 成声月, 等. 国内外红外隐身材料研究进展[J]. 激光与红外, 2015, 45(11): 1285-1291.
YE Shengtian, LIU Chaohui, CHENG Shengyue, et al. Research progress of infrared stealth materials[J]. Laser & Infrared, 2015, 45(11): 1285-1291.
[11] CHEN Lipeng, REN Zhiyong, LIU Xiaoming, et al. Infrared-visible compatible stealth based on Al-SiO2 nanoparticle composite film[J]. Opt Commun, 2021,148: 7-13.
[12] LI Xinliang, LI Minghang, LI Xin, et al. Low infrared emissivity and strong stealth of Ti-Based MXenes[J]. Research, 2022. DOI: 10.34133/2022/9892628.
[13] FANG Kaiyue, FANG Fei. Infrared stealth nanofibrous composite with thermal stability and mechanical flexibility[J]. Journal of Alloys and Compounds, 2021.DOI: 10.1016/j.jallcom.2020.157418.
[1] 王玉玺, 唐春霞, 张丽平, 付少海. 纳米炭黑的Steglich酯化反应制备及乙二醇分散性[J]. 纺织学报, 2024, 45(07): 104-111.
[2] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[3] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[4] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[5] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[6] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[7] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
[8] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[9] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[10] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[11] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[12] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[13] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[14] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[15] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!