纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 46-52.doi: 10.13475/j.fzxb.20230701401

• 纺织工程 • 上一篇    下一篇

薄鞘高包覆涤纶/棉包芯纱的结构控制及其工艺

李文雅(), 周剑, 廖昙倩, 董真真   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2023-07-07 修回日期:2024-01-09 出版日期:2024-06-15 发布日期:2024-06-15
  • 作者简介:李文雅(1988—),女,讲师,博士。主要研究方向为特种纺纱方法及其设备研发、高性能纤维纺纱工艺及产品设计。E-mail:Leewya@126.com
  • 基金资助:
    陕西省教育厅重点研究计划产业用纺织品协同创新中心项目(20JY026);中国纺织工业联合会科技指导性项目(2022020);西安工程大学博士科研基金项目(BS202105);2024年陕西省科技计划陕西省重点研发项目一般项目(2024GX-YBXM-569)

Structural control and spinning technology of highly wrapped core-spun yarn with thin sheath

LI Wenya(), ZHOU Jian, LIAO Tanqian, DONG Zhenzhen   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2023-07-07 Revised:2024-01-09 Published:2024-06-15 Online:2024-06-15

摘要:

为探究高包覆包芯纱的临界包覆率实现不露芯的包覆效果,采用低比例棉纤维包覆7.78 tex涤纶低弹丝制备出高包覆率包芯纱,且截面接近理想结构的涤纶/棉包芯纱,并进一步探讨外包棉纤维的临界比例,以及纱线结构与包覆率、棉与涤纶比例之间的关系。实验以5%为梯度不断减少外包棉纤维含量共纺制8组包芯纱,并通过数码显微系统表征纱线包覆率、截面结构等特点。结果表明:当外包棉纤维比例为53%时,包芯纱包覆率还保持在87.5%,此后包芯纱包覆率低于85%出现大面积露芯;随着外包棉纤维含量梯度化减少,包芯纱包覆率降幅呈三段变化,由开始的0.3%变化为4%,最后在52%的比例时降幅突增为9.4%。不同比例涤纶与棉纺制的包芯纱截面偏心度平均变化范围为8.8%~11.2%,实现了包芯纱结构的稳定控制。

关键词: 涤纶/棉包芯纱, 包覆率, 纱线结构, 纺纱工艺, 偏心度, 混纺比

Abstract:

Objective The wrapped effect has always been the core indicator in the market to judge the quality of the core spun yarns. In the market, the number of the wrapped fiber is always more than 80% to achieve the core filament being wrapped. The difficulty in achieving good wrapping effect lies in controlling the center position of the core wire. It is of great theoretical significance and application value to achieve high wrapping effect of yarn based on low outer fiber ratio and stable control of yarn structure, thereby improving the multi-component advantage of core yarn.

Method To achieve high yarn wrapping effect and structural stability, this research proposed a solution by installing a filament control device to adjust the spinning process and parameters. Low-elastic polyester filament with a linear density of 7.78 tex as the core yarn, cotton roving with different quantities of as wrapping fibers were used to spin cotton/polyester core-spun yarn by ring spinning. The critical wrapping ratio of core-spun yarn was explored. The relationship between the structure of core-spun yarn and the wrapping rate was analyzed. The concept of yarn section eccentricity was introduced, and the structure stability of yarn was characterized by combining yarn coverage rate and longitudinal appearance morphology.

Results The relative position of the polyester filament and cotton roving was controlled by the installed a filament positioning device. The component ratios of polyester filament and cotton roving in 8 sets of core-spun yarns are 75/25, 70/30, 65/35, 60/40, 55/45, 53/47, 52/48, 50/50; The density of core-spun yarn is 31.8, 25.5, 21.6, 19, 17.4, 16.5, 16, and 15.7 tex, respectively. 50 images were collected for each group of yarn with 100 times magnification, and the obtained image was binary-processed by Ostu algorithm to calculate the yarn coating rate. Compared with other binary processing methods, the Ostu algorithm had the smallest error probability and higher accuracy. When the component ratio of cotton roving was 53%, the coverage rate of core-spun yarns remained at 87.5%. When the component ratio of cotton roving was less than 53%, the coverage rate of core-spun yarns was lower than 85% and a large area of core polyester was exposed. It is concluded that critical coverage ratio of core-spun yarn was when the component ratios of polyester filament and cotton roving was 53/47. The average variation range of eccentricity of core yarn section under different polyester-cotton ratios was 8.8%~11.2%. The characterization of section eccentricity, yarn coverage, and longitudinal appearance morphology verified the effectiveness of the spinning process adopted in this laboratory.

Conclusion The experiment provides data support and characterization for the discussion of the critical coverage rate during spinning cotton/polyester core-spun yarn by ring spinning. The computer image processing method for calculating the core-spun yarn coverage rate was obtained, which is convenient to operate and accurate. In addition, the factors affecting the stability of core yarn structure are analyzed from the perspective of theory and spinning practice, and the stable control of core-sheath structure is achieved by adjusting the spinning process.

Key words: polyester/cotton core-spun yarn, coverage rate, yarn structural, spinning technology, eccentricity, blending ratio

中图分类号: 

  • TS104.7

图1

纺纱纱路设计示意图"

图2

涤纶与棉组分比例为60∶40下纺制的包芯纱纵向Ostu二值化处理(×100)"

图3

截面偏心度计算"

表1

不同棉涤比例包芯纱包覆率数据表"

组数 涤纶与棉
含量比
外露面积/
μm2
总面积/
μm2
外露比/
%
包覆率/
%
1# 75/25 5 184 954 681 0.54 99.46
2# 70/30 7 077 680 448 1.04 98.96
3# 65/35 9 576 839 928 1.14 98.86
4# 60/40 30 966 689 857 4.49 95.51
5# 55/45 63 805 733 815 8.69 91.31
6# 53/47 59 371 473 768 12.48 87.52
7# 52/45 139 099 670 761 20.74 79.26
8# 50/50 113 278 493 819 22.94 77.06

图4

不同比例涤纶与棉包芯纱外观图及二值化处理图(×100)"

图5

不同比例涤纶与棉纺制的包芯纱截面切片图(×200)"

表2

不同比例纱线平均偏心度"

组编
涤纶与棉的
含量比
纱线直径
R1/μm
芯纱直径
R0/μm
偏心度
γ/%
1# 75/25 365.75 20.50 11.207 50
2# 70/30 292.25 21.13 8.124 38
3# 65/35 282.38 13.88 9.753 75
4# 60/40 286.38 13.88 9.723 75
5# 53/47 294.25 11.75 8.008 75

图6

不同比例涤纶与棉纺制的包芯纱样品截面偏心度"

[1] 李文雅. 基于环锭细纱机的彩色纺纱及其产品创新[J]. 纺织导报, 2021(4): 60-62.
LI Wenya. Color spinning and product innovation based on ring spinning machine[J]. Textile Herald, 2021(4): 60-62.
[2] 祝庆利, 曲翠平. 赛络纺棉/氨纶包芯纱纱疵成因及其预防措施[J]. 毛纺科技, 2020, 48(9): 25-29.
ZHU Qingli, QU Cuiping. Causes of Cello spun cotton/spandex core yarn defects and their preventive mea-sures[J]. Wool Textile Journal, 2020, 48(9): 25-29.
[3] 吴佳庆, 王迎, 郝新敏, 等. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(8): 64-70.
WU Jiaqing, WANG Ying, HAO Xinmin, et al. Influence of filament feeding position on structure and performance of Cellon spinning core yarn[J]. Journal of Textile Research, 2021, 42(8): 64-70.
[4] 刘佳明, 李竹君, 宋业达, 等. 聚酰亚胺/间位芳纶短纤包芯纱工艺设计及性能测试[J]. 上海纺织科技, 2022, 50(2): 22-24.
LIU Jiaming, LI Zhujun, SONG Yeda, et al. Polyimide/metaaramid steven fiber core yarn process design and performance test[J]. Shanghai Textile Science and Technology, 2022, 50(2): 22-24.
[5] 丁明, 张申, 肖婷婷. 包芯纱最小包覆量计算及实例分析[J]. 天津纺织科技, 2019, (5): 45-48.
DING Ming, ZHANG Shen, XIAO Tingting. Calculation and case study of minimum cladding amount of core yarn[J]. Tianjin Textile Science and Technology, 2019(5): 45-48.
[6] 张海焕, 张毅, 童胜昊, 等. 牛仔布用多芯包芯纱强伸性能研究[J]. 棉纺织技术, 2023, 51(4): 53-56.
ZHANG Haihuan, ZHANG Yi, TONG Shenghao, et al. Study on the tensile properties of multi-core core yarn for denim[J]. Cotton Textile Technology, 2023, 51(4): 53-56.
[7] 孟召强, 冯建永. 环锭纺包芯纱包覆程度的研究[J]. 现代丝绸科学与技术, 2010, 25(3): 10-11, 14.
MENG Zhaoqiang, FENG Jianyong. Modern Silk Science and Technology, 2010, 25(3): 10-11, 14.
[8] 梁蓉, 林建华. 影响锦纶丝包芯纱包覆效果的主要因素[J]. 上海纺织科技, 2006(2): 15-17.
LIANG Rong, LIN Jianhua. The main factors affecting the coating effect of nylon silk core yarn[J]. Shanghai Textile Science and Technology, 2006(2): 15-17.
[9] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[10] 芶小珊. 基于数字图像处理技术的条码图像二值化处理[J]. 无线互联科技, 2022, 19(23): 97-99.
QI Xiaoshan. Binarization of barcode image based on digital image processing technology[J]. Wireless Internet Science and Technology, 2022, 19(23): 97-99.
[11] ELRYS SAMAH M E, FAHEEM El Habiby Fawkia, ABD ELKHALEK Rehab, et al. Investigation into the effects of yarn structure and yarn count on different types of core-spun yarns[J]. Textile Research Journal, 2022, 92(13-14):2285-2297.
[12] 欧阳微微, 李艳清, 田伟, 等. 喷气涡流纺羊绒/涤纶混纺纱纤维径向分布[J]. 现代纺织技术, 2020, 28(1): 31-35.
OUYANG Weiwei, LI Yanqing, TIAN Wei, et al. Radial distribution of air-jet vortex cashmere/polyester blended yarn[J]. Modern Textile Technology, 2020, 28(1): 31-35.
[13] 李瑶, 陈超, 李杰, 等. 基于粗纱工序短纤皮芯结构纱的性能研究[J]. 棉纺织技术, 2022, 50(8):36-41.
LI Yao, CHEN Chao, LI Jie, et al. Study on the performance of staple fiber leather core structure yarn based on roving process[J]. Cotton Textile Technology, 2022, 50(8):36-41.
[14] 邹专勇, 缪璐璐, 董正梅, 等. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(8): 27-33.
ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, et al. Effect of jet vortex spinning process on the performance of viscose/polyester core yarn[J]. Journal of Textile Research, 2022, 43(8): 27-33.
[15] 张媛. 几种短粗节纱疵的成因及控制实例解析[J]. 棉纺织技术, 2022, 50(3): 68-71.
ZHANG Yuan. Analysis of the causes and control examples of several short roving yarn defects[J]. Cotton Textile Technology, 2022, 50(3): 68-71.
[1] 周宇阳, 王旭斌, 曹巧丽, 李豪, 钱丽莉, 郁崇文. 双组分混纺纱断裂比功与混纺比的关系[J]. 纺织学报, 2023, 44(10): 39-47.
[2] 左祺, 吴华伟, 王春红, 杜娟娟. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10): 81-89.
[3] 刘帅, 郭晨宇, 陈鹤文, 杨瑞华. 赛络菲尔包缠纱结构建模分析与性能优化[J]. 纺织学报, 2023, 44(04): 63-69.
[4] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[5] 郭明瑞, 高卫东. 环锭数码纺纱线特征参数及其对织物外观影响[J]. 纺织学报, 2022, 43(11): 41-45.
[6] 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20.
[7] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[8] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[9] 涂莉, 孟家光, 李欣, 李娟子. 废旧毛/丝/棉混纺面料的组分分析及其剥色工艺[J]. 纺织学报, 2019, 40(11): 75-80.
[10] 赵洋洋, 薛元, 刘曰兴, 张国清. 竹节纱粗细节形成机制及其纺纱工艺比较[J]. 纺织学报, 2019, 40(03): 39-43.
[11] 顾燕, 薛元, 杨瑞华, 高卫东, 刘曰兴, 张国清. 三通道数码纺段彩纱的纺纱原理及其性能[J]. 纺织学报, 2019, 40(01): 46-51.
[12] 巫莹柱 梁家豪 范菲 李孔兰 杜婷 单颖法. 显微投影法测定棉/苎麻混纺比的不确定度评定[J]. 纺织学报, 2018, 39(11): 33-37.
[13] 贺玉东 薛元 杨瑞华 刘曰兴 张国清. 双通道环锭数码纺混色纱的结构及其性能[J]. 纺织学报, 2018, 39(11): 27-32.
[14] 顾燕 薛元 高卫东 杨瑞华 郭明瑞. 采用三通道数码纺的色彩渐变纱性能[J]. 纺织学报, 2018, 39(02): 62-67.
[15] 韩晨晨 程隆棣 高卫东 薛元 薛文良 杨瑞华 . 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018, 39(01): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!