纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 53-58.doi: 10.13475/j.fzxb.20230203501

• 纺织工程 • 上一篇    下一篇

石英纱线/石英纤维毡三维织物的设计及其隔热性能

李久刚1,2, 石玉菲1, 刘可帅1,2, 李文斌1,2, 柯贵珍1,2()   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.武汉纺织大学 纺织新材料与先进加工技术省部共建国家重点实验室, 湖北 武汉 430200
  • 收稿日期:2023-02-16 修回日期:2023-07-14 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 柯贵珍(1976—),女,副教授,博士。主要研究方向为新型纺织材料与功能纺织品。E-mail:kgz66@126.com
  • 作者简介:李久刚(1996—),男,硕士。主要研究方向为新型功能纺织品。
  • 基金资助:
    武汉市科技局应用基础前沿项目(2022013988065199)

Design of quartz/fiber mat three-dimensional spacer fabrics and investigation of their thermal insulation properties

LI Jiugang1,2, SHI Yufei1, LIU Keshuai1,2, LI Wenbin1,2, KE Guizhen1,2()   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2023-02-16 Revised:2023-07-14 Published:2024-06-15 Online:2024-06-15

摘要:

为充分利用石英纱线及其纤维毡良好的隔热效果制备隔热性能优异的石英纱线/石英纤维毡三维织物,采用石英纱线和纤维毡在小样织机上进行三维立体编织,针对石英纱线/石英纤维毡三维织物不易编织等诸多问题,对织机综丝综框进行降低摩擦处理;然后采用控制变量法和实验对比法,对所得石英纱线/石英纤维毡三维织物在热环境下的隔热性能进行测试表征,对其加热状态下的温度和外观形状的变化趋势和规律进行探讨。实验结果表明:石英纱线/石英纤维毡三维织物在300~700 ℃时,平均隔热保留率是相等厚度普通石英纤维织物的4倍,验证了石英纱线/石英纤维毡三维织物的优越隔热性能。确定了石英纱线/石英纤维毡三维织物具有良好的整体性能和隔热性,能够作为航天飞行器的外部隔热材料抵挡高温冲刷,因此对石英纱线/石英纤维毡三维织物性能的研究具有深远意义。

关键词: 石英纱线, 纤维毡, 三维织物, 间隔织物, 隔热性能

Abstract:

Objective Quartz fibers and their fiber mats are known for their high temperature resistance, strength and insulation and are widely used in the aerospace industry. However, how to composite quartz fibers and their fiber mats to give them the integrity and washout resistance of aerospace materials. Therefore, we performed composite weaving using an integrated weaving method and investigated the thermal insulation properties of quartz/fiber mats three-dimensional spacer fabrics.This study aims to provide valuable insights into the weaving of quartz fibers and the overall structural thermal insulation properties of three-dimensional fabrics.

Method Quartz/fiber felt three-dimensional fabrics, quartz yarn and fiber felt with better thermal insulation properties using a one-piece knitting method for knitting, fabric thickness instrument to measure the quartz/fiber felt three-dimensional spacing fabrics, calculating the number of single-layer quartz fiber fabrics of equal thickness, placing the fabric on the top of the heating plate, the sensor to measure the temperature of the fabric's upper and lower surfaces, calculating the rate of retention of the thermal insulation.

Results According to the variation of the fabric thermal insulation performance, the thermal insulation performance of quartz/fiber mat 3-D spacer fabrics is much higher than that of quartz fiber fabrics of the same thickness. By comparing thermal insulation retention of ordinary quartz fiber fabrics with quartz/fiber mat 3-D fabrics. Quartz/fiber felt three-dimensional fabrics of thermal insulation performance is significantly better than the same thickness of ordinary quartz fiber fabrics, spacer fabrics of thermal insulation temperature retention rate of up to 300 ℃, the retention rate of 64.3% is ordinary quartz fabrics insulation effect of 4.14 times, so it shows that the quartz/fiber felt three-dimensional spacer fabrics can be better applied to the application of heat-insulating materials.

Conclusion The following conclusions were drawn from the experiments. The quartz/fiber mat three-dimensional spacer fabrics showed a linear decrease in insulation temperature retention of 64.3%, 64.2%, 60.7%, 58.4%, and 56.4% with the increase in temperature during the testing process, which was attributed to the fact that the quartz fiber mats were partially damaged to the fabric insulation structure after being heated to too high a temperature, resulting in a decrease in the heat insulation capacity. In the test of ordinary single-layer ordinary quartz fiber fabric, with the increase of temperature, its thermal insulation temperature retention rate is 15.4%, 15.5%, 15.9%, 17.2%, 18.6%, and quartz/fiber mats three-dimensional spacer fabrics thermal insulation performance in contrast to spacer fabrics for the ordinary quartz fabrics 4 times, thus verifying that quartz/fiber mats three-dimensional spacer fabrics thermal insulation performance is excellent.

Key words: quartz yarn, fiber mat, three-dimensional fabric, spacer fabric, thermal insulation

中图分类号: 

  • TS102.1

图1

石英纱线/石英纤维毡三维立体织物模拟图"

图2

石英纱线/石英纤维毡三维立体织物组织结构图"

图3

石英纱线/石英纤维毡三维立体织物加热示意图"

表1

多层石英纤维织物表面温度变化 "

时间/
min
上层传感器不同预设温度下的测试温度/℃ 下层传感器不同预设温度下的测试温度/℃
300 400 500 600 700 300 400 500 600 700
4 217.8 324.8 408.3 488.3 565.0 292.8 398.4 488.9 592.4 695.4
8 238.9 331.6 414.6 493.2 567.2 295.0 398.9 492.4 596.3 698.3
12 246.5 334.4 416.6 495.8 568.3 297.4 399.5 494.6 597.8 699.3
16 252.8 337.0 418.3 496.3 570.0 298.2 399.9 497.4 599.8 699.8
20 252.9 337.1 418.4 496.4 570.4 299.0 400.3 497.6 600.1 701.2

表2

石英纱线/石英纤维毡三维织物表面温度变化情况"

时间/
min
上层传感器不同预设温度下的测试温度/℃ 下层传感器不同预设温度下的测试温度/℃
300 400 500 600 700 300 400 500 600 700
4 77.8 135.6 177.2 230.0 286.3 291.2 397.4 487.9 593.4 696.4
8 97.5 141.5 189.6 240.3 293.9 294.6 398.9 491.4 595.3 697.3
12 105.8 139.3 194.4 247.2 303.6 296.6 399.8 493.6 598.8 698.3
16 106.7 141.6 195.7 249.0 305.0 298.8 399.9 498.4 599.8 699.8
20 106.9 142.8 195.9 249.2 305.9 299.5 399.9 498.6 600.1 700.2

图4

相等厚度织物隔热性能变化图"

表3

织物隔热保留率"

传感器 多层石英纤维不同设定温度织物温度及保留率/℃ 石英纱线/石英纤维毡三维织物不同设定温度织物温度及保留率/℃
300 400 500 600 700 300 400 500 600 700
上层 252.9 337.1 418.4 496.4 570.4 106.9 142.8 195.9 249.2 305.9
下层 299.0 400.3 497.6 600.1 701.2 299.5 399.9 498.6 600.1 700.2
差值 46.6 63.8 80.2 103.7 129.8 192.6 257.1 302.7 350.9 394.3
保留率/% 15.4 15.5 15.9 17.2 18.6 64.3 64.2 60.7 58.4 56.4

图5

加热前后石英纤维毡SEM照片"

[1] 刘亚妮. 航天航空材料的应用与发展浅论[J]. 军民两用技术与产品, 2015(8):11.
LIU Yani. The application and development of aerospace materials[J]. Dual Use Technologies & Product, 2015(8):11.
[2] 张荫楠, 赵永霞. 航空航天用纺织品技术发展现状及其科技创新模式探讨[J]. 纺织导报, 2018(S1):8-30.
ZHANG Yin, ZHAO Yongxia. The development status of aerospace textile technology and its innovation mode[J]. China Textile Leader, 2018(S1):8-30.
[3] 沈学霖, 朱光明, 杨鹏飞, 等. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10):164-169.
SHEN Xuelin, ZHU Guangming, YANG Pengfei, et al. Research progress of thermal insulation materials for aerospace[J]. Polymer Materials Science & Engineering, 2016, 32(10):164-169.
[4] 开吴珍, 刘少轩. 阻燃隔热防护服的发展现状及性能研究[J]. 纺织导报, 2013, 32(9):58-60.
KAI Wuzhen, LIU Shaoxuan. Study on performance and development status-quo of protective clothing against heat and flame[J]. China Textile Leader, 2013, 32(9):58-60.
[5] 严岩, 朱福和, 王伟, 等. 高性能纤维复合材料的研究及应用[J]. 合成技术及应用, 2015, 30(4):44-48.
YAN Yan, ZHU Fuhe, WANG Wei, et al. Research and application of high performance fiber reinforced composites[J]. Synthesis Technology and Application, 2015, 30(4):44-48.
[6] 刘天奇, 王宁, 郑秋雨, 等. 飞机隔热隔音超细玻璃纤维棉燃烧火焰蔓延特性[J]. 工程科学学报, 2020, 42(12):1647-1652.
LIU Tianqi, WANG Ning, ZHENG Qiuyu, et al. Flame propagation characteristics of retardant superfine glass fiber wool in aircraft[J]. Chinese Journal of Engineering, 2020, 42(12):1647-1652.
[7] 芮珂, 何佳臻. 三维间隔织物隔热性能的研究进展[J]. 现代纺织技术, 2023, 31(1):259-268.
doi: 10.19398/j.att.202206022
RUI Ke, HE Jiazhen. Research progress on the thermal insulation performance of 3D spacer fabrics[J]. Advanced Textile Technology, 2023, 31(1):259-268.
doi: 10.19398/j.att.202206022
[8] 顾龙鑫. 芳纶三维机织物复合材料的制备与力学性能研究[D]. 郑州: 中原工学院,2016:42-51.
GU Longxin. Preparation and mechanical properties of aramid three-dimensional woven fabric composites[D]. Zhengzhou: Zhongyuan University of Technology,2016:42-51.
[9] 赵洪杰, 祝成炎, 金肖克. 机织物/隔热涂层三明治结构复合材料的制备及红外隐身性能[J]. 现代纺织技术, 2022, 30(1):61-69.
doi: 10.19398/j.att.202101025
ZHAO Hongjie, ZHU Chengyan, JIN Xiaoke. Preparation of a composite material with woven fabric/thermal insulation coating sandwich structure and its infrared stealth performance[J]. Advanced Textile Technology, 2022, 30(1):61-69.
doi: 10.19398/j.att.202101025
[10] 王汉玉, 孙润军. 间隔织物增强复合材料的隔热性能研究[J]. 合成纤维, 2020, 49(12):44-48.
WANG Hanyu, SUN Runjun. Study on thermal insulation properties of spacer fabric reinforce compo-sites[J]. Synthetic Fiber in China, 2020, 49(12): 44-48.
[11] 卢士艳. 多层组织在立体织物中的应用研究[J]. 棉纺织技术, 2013, 41(5):5-8.
LU Shiyan. Application and research of multi-layer three dimensional fabrics[J]. Cotton Textile Technology, 2013, 41(5):5-8.
[12] 李文斌, 李久刚, 何加浩, 等. 易变形的多层机织编织体及其织造方法:202210914826.3[P].2022-11-25.
LI Wenbin, LI Jiugang, HE Jiahao, et al. Multi-layer woven woven weave that is easy to deform and its weaving method:202210914826.3[P].2022-11-25.
[13] 李文斌, 李久刚, 龚浩然, 等. 对折式特种纤维编织体及其织造方法:202210808886.7[P].2022-10-11.
LI Wenbin, LI Jiugang, GONG Haoran, et al. Folded special fiber weave and weaving method thereof: 202210808886.7[P].2022-10-11.
[14] 李文斌, 李久刚, 刘洋, 等. 高复合强度多层隔热材料及应用:202210383742.1[P].2022-07-29.
LI Wenbin, LI Jiugang, LIU Yang, et al. High composite strength multilayer thermal insulation materials and applications; 202210383742.1[P].2022-07-29.
[15] 李文斌, 李久刚, 刘洋, 等. 易缝合的多层复合编织体及其应用:202210383745.5[P].2022-07-01.
LI Wenbin, LI Jiugang, LIU Yang, et al. Multi-layer composite weave with easy stitching and its application: 202210383745.5[P].2022-07-01.
[1] 马亮, 俞旭华, 刘文武, 李慈, 方以群, 李俊, 徐佳骏. 气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用[J]. 纺织学报, 2024, 45(07): 181-188.
[2] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[3] 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92.
[4] 杨美玲, 蒋高明, 王婷, 李炳贤. 基于弹簧-质点模型的单贾卡经编鞋材三维仿真[J]. 纺织学报, 2023, 44(11): 113-119.
[5] 袁汝旺, 张鹏. 间隔织物用钢筘运动路径规划及驱动机构设计[J]. 纺织学报, 2023, 44(10): 172-180.
[6] 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95.
[7] 杨美玲, 蒋高明, 王婷, 李炳贤. 经编间隔鞋材设计与三维仿真[J]. 纺织学报, 2023, 44(08): 96-102.
[8] 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145.
[9] 周志芳, 周赳, 彭稀, 黄锦波. 三维间隔空芯可变提花织物的织造工艺设计[J]. 纺织学报, 2023, 44(03): 67-72.
[10] 张毅, 邵利锋, 杨彬, 高金霞, 郁崇文. 棕榈纤维毡/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)热压复合材料的吸声性能[J]. 纺织学报, 2022, 43(10): 24-30.
[11] 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70.
[12] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54.
[13] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[14] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[15] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!