纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 82-88.doi: 10.13475/j.fzxb.20230203901

• 纺织工程 • 上一篇    下一篇

不同感官模态对织物湿感觉的影响

谭轶丹1, 张昭华1,2(), 李诗涵1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
  • 收稿日期:2023-02-17 修回日期:2023-10-12 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 张昭华(1977—),女,副教授,博士。主要研究方向为服装舒适性与功能。E-mail:zhangzhaohua@dhu.edu.cn
  • 作者简介:谭轶丹(1999—),女,硕士生。主要研究方向为服装舒适性与功能。
  • 基金资助:
    上海市自然科学基金面上项目(22ZR1403100);中央高校基本科研业务费专项资金资助项目(2232023G-02)

Effect of different sensory modalities on wetness perception of fabrics

TAN Yidan1, ZHANG Zhaohua1,2(), LI Shihan1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2023-02-17 Revised:2023-10-12 Published:2024-06-15 Online:2024-06-15

摘要:

为探究触觉、视觉、听觉的多感官模态是否比单触觉模态具有更高的湿感觉辨别能力,分别采用视觉模拟评分和信号检测论的方法评价织物的湿感觉强度与敏感度。21名受试者分别在3种感官模态(触觉单模态、视触觉双模态和视触听三模态)下触摸湿织物,同时记录受试者的指温和湿感觉大小。结果表明:在敏感度评价中,多感官模态(视触觉双模态、视触听三模态)比单感官模态的湿敏感度更高,更易辨别织物间湿度差异;在强度评价中,感官模态对湿感觉强度没有显著影响(p >0.05),织物类型与加湿量之间有显著的交互作用(p <0.05),在高水平加湿量下,对Coolmax® 的湿强度评分明显最低。研究结果丰富了湿感觉多感官成因的理论基础并为人机交互的舒适性设计提供指导。

关键词: 湿感觉, 感官模态, 织物性能, 信号检测论, 动态接触

Abstract:

Objective Wetness perception is an important sensation to evaluate whether the human body is comfortable or not. In recent years, in order to clarify the factors affecting wetness perception, scholars have mostly analyzed from two aspects, temperature and mechanical stimulation, while ignoring the influence of sensory modality on wetness perception. Therefore, in order to clarify the relationship between sensory modality and wetness perception, this paper conducts wetness perception evaluation experiments by selecting fabrics with different properties based on dynamic contact between skin and fabric.

Method For the experiment, three fabrics with comparable thickness but distinct moisture transfer properties were selected: fabric 1#, a 100% cotton sweatband with a weft flat knit construction, exhibiting excellent moisture-wicking properties; fabric 2#, 100% Coolmax®, featuring a double jacquard construction and a modified polyester with a radial 6-groove structure, renowned for its superior moisture transfer capability; Fabric 3#, a polyester-ammonia blend sweatband with a weft flat knit construction, characterized by poor moisture-wicking performance. The samples were subjected to three levels of wetness: low (L), representing 20% of the saturated water content; medium (M), at 50% of the saturated water content; and high (H), reaching 80% of the saturated water content. Among them, the experimental fabric with the level of L was used as the standard stimulus. In a subjective evaluation experiment, 21 female participants with a mean age of approximately 22 years dynamically interacted with fabrics through touch under three sensory modalities (tactile unimodal, visual-tactile bimodal, and audio-visual-tactile trimodal), and the assessments of the perceived magnitude of wetness sensation were obtained.

Results According to three-way repeated measures ANOVA, there were no significant effect of sensory modality [F (2,40) =2.463,p =0.098]and fabric type [F (2,40) =2.989,p = 0.062]on wetness perception, while a significant effect of water content [F (1.217,24.335) =109.627,p <0.001]or interactions between fabric and water content[F (2.697,53.942) =4.276,p =0.011]was found. Bonferroni's post hoc analysis displayed significant difference between the two water contents (p <0.001), with the humidity levels increasing with increasing water content in the knitted fabrics. At low level of water content, there was no significant difference on wetness perception score among fabrics; at medium level of water content, the wetness perception score of fabric 3# (polyester) was significantly lower than other fabrics; at high level of water content, the wetness perception score of fabric 2# (Coolmax®) was significantly lower than fabric 3#, while no significant difference between other fabrics. The wetness perception scores in the different sensory modalities were as follows: tactile unimodal: (4.767 ± 0.070); visual-tactile bimodal: (4.730 ± 0.052); and audiovisual-tactile trimodality: (4.941 ± 0.053). The multisensory modalities (visual-haptic bimodal and audiovisual-tactile trimodality) of moisture discrimination were greater than the tactile unimodality. Furthermore, the moisture discrimination was greater at low level than at high level humidification capacity. In addition, applying multiple regression analysis, regression equations with sensory modality, water content, and fabric type as independent variables and moisture discrimination (d') as the dependent variable is established. The results show that water content had the highest influence weight, followed by fabric type, and finally sensory modality. Together, the three independent variables explained 34% of the total variance, which was statistically significant (p = 0.032).

Conclusion This article analyzes the effects of sensory (three levels), fabric (three levels) and water addition (three levels) on skin wetting. Studies have shown that fabric and water addition have an interactive effect on skin wetness, and wettability classes increase with increasing moisture content. The audiovisual-tactile trimodality was higher on wetness perception score compared to other modalities (tactile unimodality and visual-haptic bimodal), but not statistically difference. The multisensory modalities of wetness sensitivity were greater than the tactile unimodality. By evaluating the effect of sensory modality on skin wetness sensation, the theoretical basis of multisensory genesis was enriched. In addition, the study of the effect of different interaction methods on wetness sensation can provide a reference for the comfort design of human-computer interaction. It can also be applied to fields such as sports and medicine to improve the wetness sensation experience of clothing comfort.

Key words: wetness perception, sensory modality, fabric property, theory of signal detection, dynamic contact

中图分类号: 

  • TS941.16

表1

织物规格"

编号 纤维成
分/%
组织
结构
面密度/
(g·m-2)
厚度/
mm
透气率/
(mm·s-1)
1# 棉(100%) 纬平针 153.9 0.69 295.84
2# Coolmax®
(100%)
双面
提花
137.4 0.64 794.17
3# 涤纶/氨纶
(92%/8%)
纬平针 213.5 0.67 63.88

表2

织物物理性能测试结果"


液态水管理性能 表面性能
润湿时间/s 吸湿率/(%·s-1) 最大润湿半
径/mm
扩散速度/
(mm·s-1)
单向传递
能力/%
整体水分
管理能力
dSMD/
μm
dMIU
反面 正面 反面 正面 反面 正面 反面 正面
1# 8.837±2.25 7.459±2.29 51.379±7.06 82.101±14.05 16±2.24 16±2.24 1.693±0.51 1.851±0.41 245.401±36.14 0.599±0.51 8.052±5.87 0.208±0.01
2# 3.000±0.15 3.094±0.15 33.291±1.50 46.786±2.31 20±0.00 20±0.00 4.149±0.24 4.173±0.18 167.977±14.27 0.595±0.02 2.948±1.36 0.234±0.04
3# 3.078±0.06 3.094±0.07 31.054±1.46 48.752±0.86 20±0.00 20±0.00 4.031±0.06 4.128±0.07 234.310±8.43 0.674±0.01 1.978±0.19 0.261±0.02

图1

织物在3 种感官模态下的湿感觉强度评分"

表3

不同感官模态下各织物的湿度辨别力(d')和反应偏向(β)"

感官
模态
织物
类型
加湿量水平H
为信号刺激
加湿量水平L
为信号刺激
湿度辨别力
(d')
反应偏向
(β)
湿度辨别力
(d')
反应偏向
(β)
触觉单
模态
织物1# 0.44 1.101 6 0.69 1.066 8
织物2# 0.42 1.156 3 0.86 1.112 4
织物3# 0.30 0.969 6 0.41 0.939 0
视触觉
双模态
织物1# 0.68 1.156 3 1.19 0.947 6
织物2# 0.12 1.024 5 0.75 1.024 5
织物3# 0.67 1.017 8 0.72 1.000 0
视触听
三模态
织物1# 1.14 1.087 6 1.08 1.115 3
织物2# 0.12 1.024 5 0.89 0.839 6
织物3# 0.44 0.907 8 0.13 0.992 1

表4

湿度辨别力(d')的多元线性回归结果"

自变量 未标准化系数 标准化系数 Sig. F r2
系数
B
标准
误差
β t
(常数) 0.527 0.305 1.726 0.106
感官模态 0.057 0.080 0.140 0.711 0.489 3.922 0.034
加湿量 0.266 0.130 0.402 2.039 0.061
织物类型 -0.213 0.080 -0.525 -2.665 0.018
[1] 张昭华, 唐香宁, 李俊, 等. 织物与皮肤动态接触下的湿感觉阈限与强度评价[J]. 纺织学报, 2021, 42(2): 93-100.
ZHANG Zhaohua, TANG Xiangning, LI Jun, et al. Threshold and intensity evaluation of skin wetness perception under dynamic contact with fabrics[J]. Journal of Textile Research, 2021, 42(2): 93-100.
[2] FILINGERI Davide, FOURNET Damien, SIMON Hodder, et al. Why wet feels wet? a neurophysiological model of human cutaneous wetness sensitivity[J]. Journal of Neurophysiology, 2014, 112(6): 1457-1469.
doi: 10.1152/jn.00120.2014 pmid: 24944222
[3] 李宁宁, 张昭华, 徐苏红, 等. 热环境下人体局部皮肤湿敏感性的分布特征[J]. 纺织学报, 2022, 43(9): 182-187.
LI Ningning, ZHANG Zhaohua, XU Suhong, et al. Distribution characteristics of local skin moisture sensitivity of human in thermal environment[J]. Journal of Textile Research, 2022, 43(9): 182-187.
[4] 匡才远. 基于触觉认知的着装接触感觉测定方法研究[D]. 苏州: 苏州大学, 2015: 1-137.
KUANG Caiyuan. Research on measurement method of dressing contiguous sense based on tactile perception[D]. Suzhou: Soochow University, 2015: 1-137.
[5] GILBERT Charles D, SIGMAN Mariano, CRIST Roy E. The neural basis of perceptual learning[J]. Neuron, 2001, 31(5):681-697.
pmid: 11567610
[6] 唐香宁, 张昭华, 李俊, 等. 人体皮肤湿感觉的研究进展[J]. 纺织学报, 2017, 38(9): 174-180.
TANG Xiangning, ZHANG Zhaohua, LI Jun, et al. Research progress of human skin wetness percep-tion[J]. Journal of Textile Research, 2017, 38(9): 174-180.
[7] YAMAKAWA Masaru, ISAJI Setsuko. Factors affecting the clamminess[J]. Journal of Textile Engineering, 1987, 33(1): 9-15.
[8] 苏亚帷. 皮肤感觉:感知温度与压力[J]. 科学世界, 2016(6): 88-97.
SU Yawei. Cutaneous perception: perceived temperature and pressure[J]. World of Science, 2016(6): 88-97.
[9] KATO Issei, MASUDA Yuta, NAGASHIMA Kei. Characteristics of wet perception during the static touch of moist paper by the index fingertip alongside thermal stimulus application[J]. Physiology & Behavior, 2023.DOI:10.1016/j.physbeh.2022.1140.33.
[10] RACCUGLIA Margherita, PISTAK Kolby, HEYDE Christian, et al. Human wetness perception of fabrics under dynamic skin contact[J]. Textile Research Journal, 2018, 88(19): 2155-2168.
[11] MERRICK Charlotte, ROSATI Rodrigo, FILINGERI Davide. Skin wetness detection thresholds and wetness magnitude estimations of the human index fingerpad and their modulation by moisture temperature[J]. Journal of Neurophysiology, 2021, 125(5): 1987-1999.
doi: 10.1152/jn.00538.2020 pmid: 33826451
[12] 吴涓, 吴淼, 邵知宇, 等. 一种基于信号检测论的纹理粗糙度量化评价方法:201811323969.7[P]. 2021-04-20.
WU Juan, WU Miao, SHAO Zhiyu, et al. A quantitative evaluation method of texture roughness based on signal detection theory: 2018113239-69.7[P]. 2021-04-20.
[13] 程淑, 桂林, 冀航. 主观评分的归一化算法及误差分析[J]. 高等函授学报(自然科学版), 2007(5): 28-30.
CHENG Shu, GUI Lin, JI Hang. Normalization algorithm and error analysis of subjective score[J]. Journal of Higher Correspondence Education (Natural Science Edition), 2007(5): 28-30.
[14] BECERIR Behcet, AKGUN Mine, ALPAY Halil Rifat. Effect of some yarn properties on surface roughness and friction behavior of woven structures[J]. Textile Research Journal, 2016, 86(9): 975-989.
[15] JEON Eunkyung, YOO Shinjung, KIM Eunae. Psychophysical determination of moisture perception in high-performance shirt fabrics in relation to sweating level[J]. Ergonomics, 2011, 54(6): 576-586.
[16] MERRICK Charlotte, ROSATI Rodrigo, FILINGERI Davide. The role of friction on skin wetness perception during dynamic interactions between the human index finger pad and materials of varying moisture con-tent[J]. Journal of Neurophysiology, 2022, 127(3): 725-736.
doi: 10.1152/jn.00382.2021 pmid: 35044853
[17] 蔡岑岑, 胡吉永, 丁辛. 感知模式对织物柔软性评价结果的影响[J]. 东华大学学报(自然科学版), 2012, 38(1): 26-30, 76.
CAI Cencen, HU Jiyong, DING Xin. Influence of sensory modes on fabrics softness evaluation[J]. Journal of Donghua University (Natural Science Edition), 2012, 38(1): 26-30, 76.
[18] HELLER M A. Visual and tactual texture perception: intersensory cooperation[J]. Perception & Psychophysics, 1982, 31(4): 339-344.
[19] 何聪艳, 胡吉永, 丁辛. 不同感觉模态下评价织物柔软感的心理物理特性[J]. 东华大学学报(自然科学版), 2012, 38(4): 381-385.
HE Congyan, HU Jiyong, DING Xin. Psychophysical characteristics of fabric softness evaluation for different sensory modalities[J]. Journal of Donghua University (Natural Science Edition), 2012, 38(4): 381-385.
[20] LEDERMAN Susan J. Auditory texture perception[J]. Perception, 1979, 8(1): 93-103.
pmid: 432084
[21] 徐苏红, 倪军, 孙岑文捷, 等. 织物热湿传递性能对皮肤湿感觉阈限的影响[J]. 丝绸, 2021, 58(9): 21-26.
XU Suhong, NI Jun, SUN Cenwenjie, et al. The effects of fabric heat and moistre properties on skin moist wetness perception[J]. Journal of Silk, 2021, 58(9): 21-26.
[1] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[2] 张昭华, 唐香宁, 李俊, 李璐瑶. 织物与皮肤动态接触下的湿感觉阈限与强度评价[J]. 纺织学报, 2021, 42(02): 93-100.
[3] 肖平, 钱伯丹, 鲁虹, 张向辉, 张媛. 服装缝纫平整度的研究进展[J]. 纺织学报, 2019, 40(11): 182-188.
[4] 许多, 卫江, 梅剑香, 张心伶, 张又青, 徐卫林, 刘可帅. 柔洁纺粘胶强捻纱及其织物性能[J]. 纺织学报, 2019, 40(10): 48-55.
[5] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[6] 李新彤 丛洪莲. 针织西服面料设计及其性能[J]. 纺织学报, 2018, 39(12): 47-52.
[7] 白刚 刘艳春. 触感清凉棉织物的制备及其性能[J]. 纺织学报, 2018, 39(01): 94-97.
[8] 唐香宁 张昭华 李俊 李璐瑶 冯姝元 . 人体皮肤湿感觉的研究进展[J]. 纺织学报, 2017, 38(09): 174-180.
[9] 杜晓谊 张丽平 田安丽 李敏 付少海. 导电涤纶涂层织物的制备及其性能[J]. 纺织学报, 2016, 37(10): 78-82.
[10] 王花娥. 集圈工艺参数对单面集圈织物性能的影响[J]. 纺织学报, 2016, 37(08): 54-58.
[11] 刘丽妍 陈玉平 付京涛. 黄麻混织针织物的设计与开发[J]. 纺织学报, 2014, 35(10): 46-0.
[12] 张广知, 黄小华. 纯棉染色蓬盖布潮态汽蒸阻燃整理[J]. 纺织学报, 2012, 33(5): 86-90.
[13] 王海英;李栋. 棉织物的轧-蒸潮态抗皱整理[J]. 纺织学报, 2011, 32(5): 91-94.
[14] 凌群民;谭磊. 后整理工艺对纯苎麻针织物性能的影响[J]. 纺织学报, 2010, 31(7): 91-96.
[15] 徐利平;崔毅华;薛元. 织物性能与服装结构对喇叭裙外观形态的影响[J]. 纺织学报, 2008, 29(1): 91-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!