纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 173-180.doi: 10.13475/j.fzxb.20230708401
CHEN Yufan1, ZHENG Xiaohu2,3,4(), XU Xiuliang5, LIU Bing6
摘要:
缝纫线迹缺陷检测过程易受缝纫机抖动和面料移动过快等影响,针对缺陷检测过程中的扰动影响,以高精度和快速检测缺陷特征为目标,提出一种基于机器视觉的缝纫线迹缺陷检测方法。首先将主干网络的标准卷积改用蓝图卷积的DeblurGAN-v2算法和拉普拉斯算法联用,分辨模糊与清晰图像,并对运动模糊图像去模糊。然后将师生特征金字塔匹配算法应用到缝纫线迹缺陷检测上,将困难样本挖掘技术应用到师生特征金字塔匹配算法中提高了算法的检测精度与速度。结果表明:图像去模糊算法有效地去除了由外部干扰引起的图像模糊问题,缺陷检测算法检测正确率保持在95%以上,单张图片检测速度在0.04 s以下。本文方法能有效检测线迹缺陷特征,保障生产的高效性和连续性。
中图分类号:
[1] | 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(4):191-200. |
WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction[J]. Journal of Textile Research, 2021, 42(4): 191-200. | |
[2] | 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(4): 51-57. |
LU Hao, CHEN Yuan. A method for surface defect detection of carbon fiber prepreg based on machine vision[J]. Journal of Textile Research, 2020, 41(4): 51-57. | |
[3] | FANG B, LONG X, SUN F, et al. Tactile-based fabric defect detection using convolutional neural network with attention mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2022(71): 1-9. |
[4] | ABATI D, PORRELLO A, CALDERARA S, et al. Latent space autoregression for novelty detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 481-490. |
[5] | WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for unsupervised anomaly detection[J]. arXiv Preprint, 2021. DOI: 10.48550/arxiv.2103.04257. |
[6] | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE,2020:4183-4192. |
[7] | KIM J H, KIM N, PARK Y W, et al. Object detection and classification based on YOLOv5 with improved maritime dataset[J]. Journal of Marine Science and Engineering, 2022, 10(3): 377. |
[8] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 pmid: 27295650 |
[9] | ROZUMNYI D, OSWALD MR, FERRARI V, et al. Defmo: deblurring and shape recovery of fast moving objects[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 3456-3465. |
[10] | KUPYN O, MARTYNIUK T, WU J, et al. Ddeblurring (orders-of-magnitude) faster and better[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 201: 8878-8887. |
[11] | HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 201: 1314-1324. |
[12] | HAASE D, AMTHOR M. Rethinking depthwise separable convolutions: how intra-kernel correlations lead to improved mobilenets[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14600-14609. |
[13] | DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// International Conference on Pattern Recognition. Cham: Springer International Publishing, 2021: 475-489. |
[14] | 新刚, 蔡逸超, 周晓, 等. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39 (1):139-145. |
MOU Xingang, CAI Yichao, ZHOU Xiao, et al. Online yarn cone defects detection system based on machine vision[J]. Journal of Textile Research, 2018, 39(1):139-145. |
[1] | 文嘉琪, 李新荣, 冯文倩, 李瀚森. 印花面料的边缘轮廓快速提取方法[J]. 纺织学报, 2024, 45(05): 165-173. |
[2] | 杨金鹏, 景军锋, 李吉国, 王渊博. 基于机器视觉的玻璃纤维合股纱缺陷检测系统设计[J]. 纺织学报, 2024, 45(05): 193-201. |
[3] | 白恩龙, 张周强, 郭忠超, 昝杰. 基于机器视觉的棉花颜色检测方法[J]. 纺织学报, 2024, 45(03): 36-43. |
[4] | 葛苏敏, 林瑞冰, 徐平华, 吴思熠, 罗芊芊. 基于机器视觉的曲面枕个性化定制方法[J]. 纺织学报, 2024, 45(02): 214-220. |
[5] | 史伟民, 韩思捷, 屠佳佳, 陆伟健, 段玉堂. 基于机器视觉的空纱筒口定位方法[J]. 纺织学报, 2023, 44(11): 105-112. |
[6] | 马创佳, 齐立哲, 高晓飞, 王子恒, 孙云权. 基于改进YOLOv4-Tiny的缝纫线迹质量检测方法[J]. 纺织学报, 2023, 44(08): 181-188. |
[7] | 陈罡, 金贵阳, 吴菁, 罗千. 智能服装缝制关键技术及成套装备研发[J]. 纺织学报, 2023, 44(08): 197-204. |
[8] | 陈泰芳, 周亚勤, 汪俊亮, 徐楚桥, 李冬武. 基于视觉特征强化的环锭纺细纱断头在线检测方法[J]. 纺织学报, 2023, 44(08): 63-72. |
[9] | 纪越, 潘东, 马杰东, 宋丽梅, 董九志. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(05): 198-204. |
[10] | 陶静, 汪俊亮, 徐楚桥, 张洁. 基于视觉校准的环锭纺细纱条干特征在线提取方法[J]. 纺织学报, 2023, 44(04): 70-77. |
[11] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[12] | 郑兆伦, 鲁玉军. 基于奇异值分解的双算法织物缺陷检测[J]. 纺织学报, 2022, 43(11): 59-67. |
[13] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[14] | 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169. |
[15] | 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206. |
|