纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 196-203.doi: 10.13475/j.fzxb.20230403401
史伟民1(), 李洲1, 陆伟健1, 屠佳佳1,2, 徐寅哲1
SHI Weimin1(), LI Zhou1, LU Weijian1, TU Jiajia1,2, XU Yinzhe1
摘要:
为实现针织圆纬机纱架上纱筒余纱量的实时检测,提出一种深度学习与传统图像处理相结合的检测方法。通过优化Yolov5的主干网络并加入Shuffle-Attention注意力机制,利用改进后模型在图像中检测并框出纱筒位置;然后利用透视变换、均值偏移、canny轮廓检测、闭操作等处理获取纱筒内外圆轮廓,设计基于梯度下降的圆拟合算法,拟合纱筒内外圆的轮廓,得到纱筒的内外圆半径;最后结合小孔成像的原理完成纱筒余纱量的测量。结果表明:改进后的Yolov5模型在纱筒检测精度上达到99.5%,检测速度可达20帧/s,同时模型参数减少至3.255×106可检测的最小纱筒余纱量为3 mm,当纱筒余纱量小于3 mm后,将其视为空筒,进行延时更换。本文算法拟合圆所花费时间是传统霍夫圆检测算法的1/4左右,因此可满足针织车间的实际应用需求。
中图分类号:
[1] | 阮建青, 赵吕航, 赵祚翔, 等. 成本上升对中国劳动密集型产业的影响:基于宁波纺织服装产业集群的研究[J]. 浙江大学学报(人文社会科学版), 2021, 51(6):119-133. |
RUAN Jianqing, ZHAO Lvhang, ZHAO Zuoxiang, et al. The impact of rising costs on China's labor-intensive industries: a study based on Ningbo's textile and garment industry cluster[J]. Journal of Zhejiang University (Humanities and Social Science Edition), 2021, 51(6):119-133. | |
[2] | 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺报学报, 2020, 41(12):137-143. |
ZHANG Wenchang, SHAN Zhongde, LU Ying. Rapid positioning method of sarong yarn rod based on machine vision[J]. Journal of Textile Research, 2020, 41(12): 137-143.
doi: 10.13475/j.fzxb.20200300607 |
|
[3] | 任慧娟, 金守峰, 顾金芋. 基于颜色特征的筒纱分拣机器人识别定位方法[J]. 轻工机械, 2020, 38(4):58-63. |
REN Huijuan, JIN Shoufeng, GU Jinqian. Identification and positioning method of twig sorting robot based on color characteristics[J]. Light Industrial Machinery, 2020, 38(4):58-63. | |
[4] | SHI Zhiwei, SHI Weimin, WANG Junru. The detection of thread roll's margin based on computer vision[J]. Sensors, 2021.DOI:10.3390/s21196331. |
[5] | TRIWAHYU Utomo, ADHA Imam Cahyadi, IGI ArdiYanto. Suction-based grasp point estimation in cluttered environment for robotic manipulator using deep learning-based affordance map[J]. International Journal of Automation and Computing, 2021, 18(2):277-287. |
[6] | 蓝金辉, 王迪, 申小盼. 卷积神经网络在视觉图像检测的研究进展[J]. 仪器仪表学报, 2020, 41(4):167-182. |
LAN Jinhui, WANG Di, SHEN Xiaopan. Research progress of convolutional neural network in visual image detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(4):167-182. | |
[7] | HU Jie, SHEN Li, SUN Gang, et al. Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018:7132-7141. |
[8] | ZHANG Q, YANG Y. SA-Net: shuffle attention for deep convolutional neural networks[C]// Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE, 2021: 2235-2239. |
[9] |
印明昂, 王钰烁, 孙志礼, 等. 一种自适应步长的复合梯度加速优化算法[J]. 东北大学学报(自然科学版), 2020, 41(9):1274-1279.
doi: 10.12068/j.issn.1005-3026.2020.09.010 |
YIN Mingang, WANG Yushuo, SUN Zhili, et al. A composite gradient acceleration optimization algorithm for adaptive step size[J]. Journal of Northeastern University(Natural Science Edition), 2020, 41(9):1274-1279. | |
[10] | 杨朋波, 桑基韬, 张彪, 等. 面向图像分类的深度模型可解释性研究综述[J]. 软件学报, 2023, 34(1):230-254. |
YANG Pengbo, SANG Jitao, ZHANG Biao, et al. Review of deep model interpretability for image classification[J]. Journal of Software, 2023, 34 (1):230-254. | |
[11] | SAPAKOVA S, SAPAKOV A, YILIBULE Y. A YOLOv5-based model for real-time mask detection in challenging environments[J]. Procedia Computer Science, 2024, 231: 267-274. |
[12] | 宇文亮. 基于Kinect的物体模型建立及识别定位技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 14-16. |
YU Wenliang. Research on object model establishment and recognition and positioning technology based on Kinect[D]. Harbin: Harbin Institute of Technology, 2018:14-16. |
[1] | 孙磊, 屠佳佳, 毛慧敏, 王俊茹, 史伟民. 针织智能车间自动换筒任务调度技术[J]. 纺织学报, 2023, 44(12): 189-196. |
[2] | 彭来湖 吴英刚 王罗俊 胡旭东. 针织圆纬机牵拉张力闭环控制技术[J]. 纺织学报, 2018, 39(10): 125-130. |
|