纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 31-39.doi: 10.13475/j.fzxb.20230205101

• 纤维材料 • 上一篇    下一篇

纤维弯曲对其集合体过滤特性影响的稳态数值分析

刘倩倩1, 尤健明2, 王琰1,3, 孙成磊2, 祝国成1,3,5()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江朝晖过滤技术股份有限公司, 浙江 嘉兴 314511
    3.浙江理工大学 浙江-捷克先进纤维材料联合实验室, 浙江 杭州 310018
    4.利贝雷茨理工大学 纺织工程学院, 捷克 利贝雷茨 46117
    5.浙江省现代纺织技术创新中心(鉴湖实验室), 浙江 绍兴 312000
  • 收稿日期:2023-02-21 修回日期:2023-07-31 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 祝国成(1984—),男,副教授,博士。主要研究方向为纤维过滤材料。E-mail:gchengzhu@zstu.edu.cn
  • 作者简介:刘倩倩(1995—),女,硕士生。主要研究方向为空气过滤材料仿真分析。
  • 基金资助:
    国家自然科学基金项目(51803182);浙江省“尖兵”“领雁”研发攻关计划项目(2023C01194);高等学校学科创新引智计划资助项目(D21011);浙江理工大学基本科研业务费专项资金项目(22202304-Y)

Influence of fiber curvature on filtration characteristics of fibrous assembly by steady-state numerical analysis

LIU Qianqian1, YOU Jianming2, WANG Yan1,3, SUN Chenglei2, JIRI Militky4, DANA Kremenakova4, JAKUB Wiener4, ZHU Guocheng1,3,5()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Zhaohui Filtration Technology Co., Ltd., Jiaxing, Zhejiang 314511, China
    3. Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Faculty of Textile Engineering, Technical University of Liberec, Liberec 46117, Czech Repubilc
    5. Zhejiang Innovation Center of Advanced Textile Technology(Jianhu Laboratory), Shaoxing, Zhejiang 312000, China
  • Received:2023-02-21 Revised:2023-07-31 Published:2024-07-15 Online:2024-07-15

摘要:

为探究纤维过滤介质中纤维曲率对其内部速度分布、压力损失、过滤效率的影响,通过Digimat建模软件建立曲率K分别为0、2、4、6,固体体积分数为8 %,在三维空间中随机分散排列的纤维过滤介质模型,结合计算流体力学方法,基于拉格朗日离散模型和Laminar流场,利用雷诺相似准则,设置入口速度分别为0.05、0.142、0.5、1、2 m/s,平均颗粒粒径为0.25、0.5、1、1.5、2.5、4、5 mm,对微米纤维模型内部气-固两相流动情况进行数值模拟。结果表明:随着纤维曲率K由0增大至6,在入口速度为0.5 m/s时,纤维曲率对速度场分布的影响不明显,速度场的分布呈无规律性;纤维曲率对模型内部压力损失有显著影响,随着纤维曲率的提高,纤维模型内部压力损失呈线性增大;纤维过滤介质的过滤效率随纤维模型曲率的增大而提高,在入口速度为1 m/s、模型曲率K为6时,对平均粒径为5 mm的颗粒过滤效率接近90 %,明显高于相同粒径下K为0时的过滤效率。

关键词: 计算流体力学, 纤维曲率, 压力损失, 数值模拟, 过滤效率

Abstract:

Objective In filtration simulation calculation for internal structure of fiber assemblies, the fiber filtration medium model established is limited to a single cylinder. Although this simplified model is conducive to the rapid solution of the problem, its limitation is that it cannot fully demonstrate the influence of multi-fiber structure on the filtration performance. In practical engineering applications, fibers in the assembly used for air filtration have axially curved structures, and are not completely cylindrical. If this factor is ignored, the simulated results will be inevitably different from the actual test results, and the filtration characteristics and internal pressure loss of the filter material can not be accurately described. In order to simulate and predict the properties of fiber filter media more accurately, more complex models need to be built to describe the internal structure of fiber assembly. This includes considering the bending and random arrangement of the fibers. The refined model will help understand furtherthe flow characteristics and filtration behavior of fiber filter media, improve the consistency of simulation results and actual test results, and provide a reliable scientific basis for the design and optimization of filter media in engineering applications.

Method A three-dimensional fiber filter media model with curvature K=0, 2, 4 and 6, solid volume fraction of 8%, randomly distributed in space was established by Digimat modeling software. Combined with computational fluid dynamics methods, based on Lagrange discrete model and Laminar flow field, similarity principle and Reynolds similarity criterion were used. The inlet velocities were set as 0.05, 0.142, 0.5, 1 and 2 m/s, respectively, and the average particle size was 0.25, 0.5, 1, 1.5, 2.5, 4 and 5 mm. The gas-solid two-phase flow inside the micron fiber model was numerically simulated.

Results As the fiber curvature K increases from 0 to 6, when the inlet velocity is 0.5 m/s, the distribution of the fiber in the filter region is irregular, random and asymmetrical, and the flow velocity distribution is also irregular, and the influence of curvature on the velocity field distribution is not obvious. With the increase of the curvature of the fiber model, the internal pressure loss of the fiber model increases linearly. The pressure value of the windward side of the fiber is greater than that of the leeward side, and the pressure loss when the curvature K is 6 is significantly greater than that when the curvature K is 0. The filtration efficiency of fiber filtration medium increases with the increase of model curvature. When the inlet velocity is 1 m/s and the curvature K is 6, the filtration efficiency of particles with an average particle size of 5 mm is close to 90 %, which is significantly higher than the filtration efficiency of K=0 under the same particle size. This is because the curvature of the fiber increases and more bending and folding will appear on the fiber surface, which will increase the surface area of the fiber. The larger surface area of the fiber provides more opportunity for the fiber to contact with the dusty air stream, which makes it easier for the fiber to collide with particles in the air stream and trap them. In addition, the greater the curvature of the fiber body, the greater the degree of deformation and distortion of the fiber body. Thus, a more complex and disorganized stacking and crossing structure can be formed between adjacent fibers, and the pore size between adjacent fibers is smaller, so that the interception and trapping capability of a single fiber on particles will be greatly improved, and the overall filtration efficiency of the filter medium will also be improved.

Conclusion The filtration efficiency and pressure loss of the fiber assembly increase with the increase of fiber curvature. In practical engineering applications, in order to improve the filtration capacity of the filter material, the filter material with more fold structure is used as far as possible to increase the filtration area and dust holding capacity of the filter material while ensuring the pressure loss as little as possible. The folded structure makes the fibers in the filter material show a high degree of non-uniformity. More interception sites and bending paths are created, effectively enhancing the interaction between particles and fibers, thereby improving the filtration efficiency of the filter material.

Key words: computational fluid dynamics, fiber curvature, pressure loss, numerical simulation, filtration efficiency

中图分类号: 

  • TS151

图1

不同曲率纤维过滤介质模型"

图2

模拟区域和边界条件"

图3

网格加密示例"

图4

网格数量对压降的影响"

图5

不同曲率模型的流场速度分布"

图6

不同曲率模型的流场压力分布"

表1

不同曲率模型在不同粒径颗粒下的过滤效率"

纤维
曲率K
不同颗粒粒径下的过滤效率/%
0.25 mm 0.5 mm 1 mm 1.5 mm 2.5 mm 4 mm 5 mm
0 73.25 74.89 78.46 81.35 83.22 83.68 84.20
2 80.00 82.39 83.62 84.16 84.07 84.52 84.52
4 84.33 84.33 85.50 85.50 86.67 86.08 85.83
6 85.76 88.05 88.14 88.14 88.14 87.97 88.97
[1] 王亮. 纤维过滤捕集效率模拟及特性研究[D]. 上海: 东华大学, 2014: 11.
WANG Liang. Simulation and characterization of fiber filtration capture efficiency[D]. Shanghai: Donghua University, 2014: 11.
[2] 陈昌江, 闫祥, 徐毓亚. 单纤维和随机多纤维过滤特性模拟研究[J]. 研究开发, 2019 (2): 16.
CHEN Changjiang, YAN Xiang, XU Yuya. Simulation study of single-fiber and random multi-fiber filtration characteristics[J]. Research and Development, 2019(2): 16.
[3] DAVIES C N. Air filtration[M]. London: Academic Press, 1973: 123-128.
[4] FRIEDLANDER S. Theory of aerosol filtration[J]. Industrial and Engineering Chemistry, 1958, 50(4): 1161-1164.
[5] BROWN R C. Airflow through filters-beyond single fibrous theory[J]. Chemical Engineering Science, 1993, 48(20): 3535-3543.
[6] BROWN R C. Airflow through filters-beyond single fibrous theory[M]. Boca Roton: Lewis publishers, 1997: 97-105.
[7] OREST L, ALBERT P. Single-fibrous collection efficiency[M]. Boca Roton: Lewis publishers, 1997: 238-241.
[8] 付海明, 沈恒根. 纤维过滤器过滤理论的研究进展[J]. 中国粉体技术, 2003, 9(1): 41-46.
FU Haiming, SHEN Henggen. Research progress of fiber filter filtration theory[J]. Chinese Powder Technology, 2003, 9(1): 41-46.
[9] RAO N, FAGHRI M, Computer modeling of aerosol filtration by fibrousfilters[J]. Aerosol Science and Technology, 1988, 8(2): 133-156.
[10] SHOBOKSHY M S, SANEA S A, ADNAN A M, et al. Computer simulation of monodisperse aerosol collection in fibrous filters[J]. Aerosol Science and Technology, 1994, 20(2): 149-160.
[11] DHANIYALA S, BENJAMIN L. An asymmetrical three-dimensional model for fibrous filters[J]. Aerosol Science and Technology, 1999, 30(4): 333-348.
[12] ZOBEL S, MAZE B, VAHEDDI H, et al. Simulating permeability of 3-D calendared fibrous structures[J]. Chemical Engineering Science and Technology, 2007, 62(22):6285-6296.
[13] HOSSEINI S A, TAFRESHI H V. 3-D simulation of particle filtration in electrospun nanofibrous filters[J]. Powder Technology, 2010, 201(2): 153-160.
[14] 诸文旎, 徐润楠, 胡蝶飞, 等. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(9): 77-80.
ZHU Wenni, XU Runnan, HU Diefei, et al. Simulation analysis of filtration characteristics of fiber materials based on random algorithm[J]. Journal of Textile Research, 2022, 43(9): 77-80.
[15] 朱中奎, 张爱利, 范瑞华, 等. 气溶胶纤维过滤技术研究综述[J]. 江汉大学学报(自然科学版), 2019, 47(6): 521-522.
ZHU Zhongkui, ZHANG Aili, FAN Ruihua, et al. A review of aerosol fiber filtration technology[J]. Journal of Jianghan University(Natural Science Edition), 2019, 47(6): 521-522.
[16] FAESSEL M, DELISEE C, BOS F, et al. 3D modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis[J]. Composites Science and Technology, 2005, 65(15): 1931-1940.
[17] 程尚模, 季中. 相似理论及其在热工和化工中的应用[M]. 武汉: 华中理工大学出版社, 1990: 226-228.
CHENG Shangmu, JI Zhong. Similar theory and its application in thermal and chemical engineering[M]. Wuhan: Huazhong University of Science and Technology Press, 1990: 226-228.
[18] ZOHURI B, Dimensional analysis and self-similarity methods for engineers and scientists[M]. Switzerland: Springer International Publishing, 2015: 255.
[19] KUNEŠ J. Similarity and modeling in science and engineering[M]. England: Cambridge International Science Publishing, 2012: 125.
[20] 张杰. 纤维多孔介质的阻力特性研究[D]. 上海: 东华大学, 2015: 11.
ZHANG Jie. Study on resistance characteristics of fiber porous media[D]. Shanghai: Donghua University, 2015: 11.
[21] 黄山, 徐伟, 张喻捷, 等. 基于Ansys Workbench的往复吊厢吊杆网格无关性分析[J]. 起重运输机械, 2022(1): 62.
HUANG Shan, XU Wei, ZHANG Yujie, et al. Ansys workbench-based mesh agnostic analysis of reciprocating gondola booms[J]. Hoisting and Conveying Machinery, 2022(1): 62.
[1] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[2] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[3] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[4] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[5] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[6] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[7] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[8] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[9] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[10] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[11] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[12] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[13] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[14] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[15] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!