纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 10-17.doi: 10.13475/j.fzxb.20240403501

• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇    下一篇

非对称润湿性纤维复合膜的制备及其油水分离性能

杨硕1,2,3, 赵朋举1,2,3, 程春祖1,2,4, 李晨暘1,2,3, 程博闻1,2,3,4()   

  1. 1.天津科技大学 轻工科学与工程学院, 天津 300457
    2.天津科技大学 生物源纤维制造技术国家重点实验室, 天津 300457
    3.天津科技大学 天津市制浆造纸重点实验室, 天津 300457
    4.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
  • 收稿日期:2024-04-15 修回日期:2024-05-12 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 程博闻(1963—),男,教授,博士。主要研究方向为产业用纺织品。E-mail:bowenc17@tust.edu.cn
  • 作者简介:杨硕(1990—),男,副教授,博士。主要研究方向为轻纺新材料。
  • 基金资助:
    国家自然科学基金项目(22208247);生物源纤维制造技术国家重点实验室开放基金资助课题(SKL202201)

Preparation of composite fiber membranes with asymmetric wettability and oil-water separation performance

YANG Shuo1,2,3, ZHAO Pengju1,2,3, CHENG Chunzu1,2,4, LI Chenyang1,2,3, CHENG Bowen1,2,3,4()   

  1. 1. School of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
    2. State Key Laboratory of Bio-based Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
    3. Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
    4. State Key Laboratory of Bio-based Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China
  • Received:2024-04-15 Revised:2024-05-12 Published:2024-08-15 Online:2024-08-21

摘要:

为解决乳化油分离过程中分离效率和通量难以兼顾的问题,以木浆为原料,以氯化锂/N,N-二甲基乙酰胺为溶剂,采用静电纺丝技术制备纤维素纳米纤维膜;以纤维素纳米纤维膜为亲水层,以聚丙烯熔喷布为疏水层,采用热压复合工艺,构建了具有非对称润湿性材料(Janus)特性的纤维复合膜,并应用于乳化油的油水分离。结果表明:在最佳工艺条件下,复合膜的孔径为0.826 μm,分离效率为98.8%,通量为9 798.8 L/(m2·h);复合膜具有优异的重复使用性能,使用10次后其分离效率仍能保持在98%,通量达9 444.5 L/(m2·h);复合膜对正己烷、正庚烷、三氯甲烷、四氯化碳、石油醚均具有显著分离效果,其分离效率均大于98%,通量均在9 000 L/(m2·h)以上。

关键词: 纤维素, 静电纺丝, 纳米纤维, 聚丙烯熔喷布, 油水分离, 非对称润湿性材料

Abstract:

Objective Emulsified oil is known to be difficult to separate due to the close combination of water and oil, and Janus composite membrane with multiple wettability is studied aiming to effectively separate the emulsified oil. In this study, the Janus structure is constructed by two layers of fiber membranes with different wettability, and the difference of micro-nanometer size is used to solve the problem of high separation efficiency and low flux of composite membranes, so as to prepare composite membranes with both high separation efficiency and high flux.

Method Janus composite membranes with micro- and nano-structures were prepared from cellulose nanofiber membranes as hydrophilic layer and polypropylene meltblown nonwovens as hydrophobic layer by hot pressing method. The prepared cellulose-polypropylene composite nanofiber membranes were characterized using scanning electron microscope, capillary flow pore size analyzer and contact angle tester. The composite membranes were also tested for pore size, Laplace force, separation performance, repeatability and generalizability.

Results The cellulose nanofiber membrane prepared by electrostatic spinning technology using cellulose as raw material. The results showed that when the spinning voltage was 25 kV, the spinning rate was 5 mL/h and the spinning time was 16 h, the cellulose nanofiber membranes showed the best performance, with an average pore size of 5.029 μm and a thickness of 0.281 mm. The cellulose nanofiber membrane showed amphiphilicity in air, oleophobicity under water, and hydrophilicity under oil, which can be used as a hydrophilic material for Janus structure. Polypropylene meltblown nonwovens exhibits hydrophobicity and lipophilicity in air, hydrophobicity under oil, and lipophilicity under water, and can be used as a hydrophobic material for Janus structure. The Janus membrane was then prepared by laminating cellulose nanofiber membrane and polypropylene meltblown nonwovens in combination with hot pressing process. The areal density of polypropylene meltblown nonwovens, hot pressing temperature and hot pressing pressure were found to affect the performance of the composite membrane. According to the experiments, when the grammage of polypropylene meltblown nonwovens was 30 g/m2, the hot pressing temperature was 130 ℃, and the hot pressing pressure was 30 N, the separation efficiency and flux of the composite membrane are the most balanced, with 98.8% and 9 789.9 L/(m2·h), respectively. The composite membrane demonstrated excellent reuse performance, and after 10 cyclic use, its separation efficiency still maintained at 98%, and the flux 9 444.5 L/(m2·h). The composite membrane showed significant separation effect on these oils to be mentioned, for which the separation efficiency was more than 98%, and the flux was more than 9 000 L/(m2·h).

Conclusion In this study, Janus composite membranes with cellulose nanofiber membrane as hydrophilic layer and polypropylene meltblown nonwovens as hydrophobic layer were prepared. The composite membranes prepared under optimum process conditions achieved the best separation efficiency and flux of 98.8% and 9 798.8 L/(m2·h), respectively. The composite membranes had excellent reusability, and the separation efficiency could still maintain 98% and the flux reached 9 444.5 L/(m2·h) after 10 cyclic use. The composite membranes had significant separation effects on all five common emulsified oils. This idea achieves a balance between separation efficiency and flux, and has theoretical value and practical significance for the development of emulsified oil separation membranes.

Key words: cellulose, electrostatic spinning, nanofiber, polypropylene meltblown nonwoven, oil-water separation, Janus

中图分类号: 

  • TS174.8

图1

纤维素纳米纤维膜和复合膜的制备工艺流程"

图2

不同参数下纤维素纳米纤维膜的SEM照片"

表1

不同参数下纤维素纳米纤维膜的孔径和厚度"

纺丝参数 纤维素纳米纤维膜特性
纺丝时
间/h
纺丝电
压/kV
纺丝速率/
(mL·h-1)
孔径/
μm
厚度/
mm
8 25 5 7.212 0.145
16 25 5 5.029 0.281
24 25 5 4.494 0.425
8 24 5 6.694 0.166
8 26 5 4.520 0.135
8 25 4 4.099 0.126
8 25 6 6.799 0.164

图3

纤维素纳米纤维膜的润湿性"

图4

聚丙烯熔喷布的润湿性"

表2

不同参数下复合膜的孔径"

工艺参数 复合膜的
孔径/μm
熔喷布面密度/
(g·m-2)
热压温
度/℃
热压压
力/N
20 130 30 1.178
30 130 30 0.826
40 130 30 0.513
30 110 30 1.360
30 120 30 1.165
30 140 30 0.614
30 150 30 0.394
30 120 10 1.330
30 120 20 0.983
30 120 40 0.709
30 120 50 0.573

图5

不同参数下复合膜的拉普拉斯力"

图6

复合膜的分离机制"

表3

不同参数下复合膜的分离效率和通量"

工艺参数 复合膜性能
熔喷布面密
度/(g·m-2)
热压温
度/℃
热压压
力/N
分离效
率/%
通量/
(L·(m2·h)-1)
20 130 30 95.8 17 956.5
30 130 30 98.8 9 798.8
40 130 30 98.9 8 726.1
30 110 30 98.0 15 788.1
30 120 30 98.4 12 615.1
30 140 30 99.1 5 183.1
30 150 30 99.3 2 105.1
30 120 10 96.8 33 873.7
30 120 20 97.9 22 962.5
30 120 40 98.9 7 105.1
30 120 50 99.3 5 183.1

图7

乳化油的分离效果"

图8

复合膜在不同重复次数下的分离效率和通量"

图9

复合膜分离不同乳化油的分离效率和通量"

[1] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058.
[2] 孙亚红. 超润湿改性膜的制备及其油水分离性能研究[D]. 济南: 山东大学, 2020: 1-2.
SUN Yahong. Preparation of super-wetting modified membrane and its oil-water separation performance[D]. Ji'nan: Shandong University, 2020: 1-2.
[3] 任宝娜, 皮浩弘, 谷英姝, 等. Janus膜的制备及其应用研究进展[J]. 材料工程, 2020, 48(7): 72-80.
doi: 10.11868/j.issn.1001-4381.2019.000530
REN Baona, PI Haohong, GU Yingshu, et al. Advances in the preparation and application of Janus membranes[J]. Materials Engineering, 2020, 48(7): 72-80.
[4] BHUSHAN B. Bioinspired oil-water separation approaches for oil spill clean-up and water purification[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 1-6.
[5] QIU L, SUN Y, GUO Z. Designing novel superwetting surfaces for high-efficiency oil-water separation: design principles, opportunities, trends and challenges[J]. Journal of Materials Chemistry A, 2020, 8(33): 16831-16853.
[6] LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review[J]. Progress in Polymer Science, 2018, 87: 1-33.
[7] YANG J, LI H N, CHEN Z X, et al. Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2019, 7(13): 7907-7917.
[8] YANG H C, XIE Y, HOU J, et al. Janus membranes: creating asymmetry for energy efficiency[J]. Advanced Materials, 2018, 30(43): 1-6.
[9] CHENG X, YE Y, LI Z, et al. Constructing environmental-friendly ″Oil-Diode″ janus membrane for oil/water separation[J]. ACS Nano, 2022, 16(3): 4684-4692.
[10] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361.
doi: 10.1039/c4cs00220b pmid: 25311259
[11] PAN Y, HUANG S, LI F, et al. Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation[J]. Journal of Materials Chemistry A, 2018, 6(31): 15057-15063.
[12] CHU Z, FENG Y, SEEGER S. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angewandte Chemie International Edition, 2015, 54(8): 2328-2338.
[13] LV Y, LI Q, HOU Y, et al. Facile preparation of an asymmetric wettability janus cellulose membrane for switchable emulsions' separation and antibacterial property[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 15002-15011.
[14] SU Y, FAN T, CUI W, et al. Advanced electrospun nanofibrous materials for efficient oil/water separation[J]. Advanced Fiber Materials, 2022, 4(5): 938-958.
[15] CHENG C, WEI Z, GU J, et al. Rational design of Janus nanofibrous membranes with novel under-oil superhydrophilic/superhydrophobic asymmetric wettability for water-in-diesel emulsion separation[J]. Journal of Colloid and Interface Science, 2022, 606: 1563-1571.
[16] 李子昂. 双侧非对称超润湿性膜的制备及在油水分离中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 24-25.
LI Ziang. Preparation of bilaterally asymmetric superwettable membrane and its application in oil-water separation[D]. Harbin: Harbin Institute of Technology, 2021: 24-25.
[17] 刘明琳. 具有“双流体二极管”性质及智能响应的Janus膜的制备及应用[D]. 郑州: 郑州大学, 2021: 4-5.
LIU Minglin. Preparation and application of Janus membrane with "two-fluid diode" property and smart response[D]. Zhengzhou: Zhengzhou University, 2021: 4-5.
[18] YAN L, YANG X, ZHANG Y, et al. Porous Janus materials with unique asymmetries and functionality[J]. Materials Today, 2021, 51: 626-647.
[1] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[2] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[3] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[4] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[5] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[6] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[7] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[8] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[9] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[10] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[11] 昌康琪, 罗梦颖, 赵青华, 王栋, 李沐芳. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 24-30.
[12] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[13] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[14] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[15] 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!