纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 10-17.doi: 10.13475/j.fzxb.20240403501
• 纺织科技新见解学术沙龙专栏:先进非织造品与技术 • 上一篇 下一篇
杨硕1,2,3, 赵朋举1,2,3, 程春祖1,2,4, 李晨暘1,2,3, 程博闻1,2,3,4()
YANG Shuo1,2,3, ZHAO Pengju1,2,3, CHENG Chunzu1,2,4, LI Chenyang1,2,3, CHENG Bowen1,2,3,4()
摘要:
为解决乳化油分离过程中分离效率和通量难以兼顾的问题,以木浆为原料,以氯化锂/N,N-二甲基乙酰胺为溶剂,采用静电纺丝技术制备纤维素纳米纤维膜;以纤维素纳米纤维膜为亲水层,以聚丙烯熔喷布为疏水层,采用热压复合工艺,构建了具有非对称润湿性材料(Janus)特性的纤维复合膜,并应用于乳化油的油水分离。结果表明:在最佳工艺条件下,复合膜的孔径为0.826 μm,分离效率为98.8%,通量为9 798.8 L/(m2·h);复合膜具有优异的重复使用性能,使用10次后其分离效率仍能保持在98%,通量达9 444.5 L/(m2·h);复合膜对正己烷、正庚烷、三氯甲烷、四氯化碳、石油醚均具有显著分离效果,其分离效率均大于98%,通量均在9 000 L/(m2·h)以上。
中图分类号:
[1] | GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058. |
[2] | 孙亚红. 超润湿改性膜的制备及其油水分离性能研究[D]. 济南: 山东大学, 2020: 1-2. |
SUN Yahong. Preparation of super-wetting modified membrane and its oil-water separation performance[D]. Ji'nan: Shandong University, 2020: 1-2. | |
[3] |
任宝娜, 皮浩弘, 谷英姝, 等. Janus膜的制备及其应用研究进展[J]. 材料工程, 2020, 48(7): 72-80.
doi: 10.11868/j.issn.1001-4381.2019.000530 |
REN Baona, PI Haohong, GU Yingshu, et al. Advances in the preparation and application of Janus membranes[J]. Materials Engineering, 2020, 48(7): 72-80. | |
[4] | BHUSHAN B. Bioinspired oil-water separation approaches for oil spill clean-up and water purification[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 1-6. |
[5] | QIU L, SUN Y, GUO Z. Designing novel superwetting surfaces for high-efficiency oil-water separation: design principles, opportunities, trends and challenges[J]. Journal of Materials Chemistry A, 2020, 8(33): 16831-16853. |
[6] | LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review[J]. Progress in Polymer Science, 2018, 87: 1-33. |
[7] | YANG J, LI H N, CHEN Z X, et al. Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2019, 7(13): 7907-7917. |
[8] | YANG H C, XIE Y, HOU J, et al. Janus membranes: creating asymmetry for energy efficiency[J]. Advanced Materials, 2018, 30(43): 1-6. |
[9] | CHENG X, YE Y, LI Z, et al. Constructing environmental-friendly ″Oil-Diode″ janus membrane for oil/water separation[J]. ACS Nano, 2022, 16(3): 4684-4692. |
[10] |
WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361.
doi: 10.1039/c4cs00220b pmid: 25311259 |
[11] | PAN Y, HUANG S, LI F, et al. Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation[J]. Journal of Materials Chemistry A, 2018, 6(31): 15057-15063. |
[12] | CHU Z, FENG Y, SEEGER S. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angewandte Chemie International Edition, 2015, 54(8): 2328-2338. |
[13] | LV Y, LI Q, HOU Y, et al. Facile preparation of an asymmetric wettability janus cellulose membrane for switchable emulsions' separation and antibacterial property[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 15002-15011. |
[14] | SU Y, FAN T, CUI W, et al. Advanced electrospun nanofibrous materials for efficient oil/water separation[J]. Advanced Fiber Materials, 2022, 4(5): 938-958. |
[15] | CHENG C, WEI Z, GU J, et al. Rational design of Janus nanofibrous membranes with novel under-oil superhydrophilic/superhydrophobic asymmetric wettability for water-in-diesel emulsion separation[J]. Journal of Colloid and Interface Science, 2022, 606: 1563-1571. |
[16] | 李子昂. 双侧非对称超润湿性膜的制备及在油水分离中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 24-25. |
LI Ziang. Preparation of bilaterally asymmetric superwettable membrane and its application in oil-water separation[D]. Harbin: Harbin Institute of Technology, 2021: 24-25. | |
[17] | 刘明琳. 具有“双流体二极管”性质及智能响应的Janus膜的制备及应用[D]. 郑州: 郑州大学, 2021: 4-5. |
LIU Minglin. Preparation and application of Janus membrane with "two-fluid diode" property and smart response[D]. Zhengzhou: Zhengzhou University, 2021: 4-5. | |
[18] | YAN L, YANG X, ZHANG Y, et al. Porous Janus materials with unique asymmetries and functionality[J]. Materials Today, 2021, 51: 626-647. |
[1] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[2] | 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126. |
[3] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[4] | 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149. |
[5] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[6] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[7] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[8] | 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80. |
[9] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[10] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[11] | 昌康琪, 罗梦颖, 赵青华, 王栋, 李沐芳. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 24-30. |
[12] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[13] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[14] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
[15] | 刘鑫, 王婵, 窦皓, 孟家光, 陈莉, 樊威. 废旧棉/纳米纤维素自增强复合纸的制备与性能[J]. 纺织学报, 2024, 45(06): 39-45. |
|