纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 116-126.doi: 10.13475/j.fzxb.20230200101
闫迪1,2, 王雪芳1,2,3(), 谭文萍1,2, 高国金1,2, 明津法1,2,3,4, 宁新2,3
YAN Di1,2, WANG Xuefang1,2,3(), TAN Wenping1,2, GAO Guojin1,2, MING Jinfa1,2,3,4, NING Xin2,3
摘要:
为开发具有油水分离和吸附重金属离子双重功能的新型膜材料,利用静电纺丝技术制备左旋聚乳酸(PLLA)纳米纤维膜,再依次采用溶剂诱导结晶和1-(3-氨基丙基)咪唑(API)修饰改性得到富咪唑型多孔PLLA纳米纤维膜,并对其微观形貌、化学基团构成、力学性能和润湿性能进行测试与表征,研究了该纳米纤维膜的油水分离性能和对铜离子的吸附性能。结果表明:当丙酮与水体积比为10∶1、丙酮/水混合溶液用量为0.4 mL/(mg纤维)、处理时间为150 s时,溶剂诱导结晶处理所得PLLA纳米纤维膜中多孔纤维的形貌最佳;API修饰改性并未对多孔纤维的形貌和直径产生过多影响,改性后PLLA纳米纤维膜表面出现的咪唑和酰胺基团能够有效改善其润湿性能,使静态水接触角下降了15.6°;与未改性PLLA纳米纤维膜相比,所制得富咪唑型多孔PLLA纳米纤维膜的脆性有所增加,但其断裂强度仍能达到未改性的PLLA纳米纤维膜断裂强度的96.6%,整体力学性能保持良好;利用该纳米纤维膜可实现有效油水分离,分离通量为1 044.9 L/(m2·h),分离效率可达99.1%,且其对铜离子吸附性能良好,在pH值为6的铜离子溶液中接触24 h后,对铜离子吸附量可达41.46 mg/g。
中图分类号:
[1] | CHEN H S, HUANG M H, LIU Y B, et al. Functionalized electrospun nanofiber membranes for water treatment: a review[J]. Science of the Total Environment, 2020. DOI:10.1016/j.scitotenv.2020.139944. |
[2] | 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014, 35(11): 6-12. |
WANG Zhe, PAN Zhijuan. Porous structure and air filtration performance of electrospun PLA fibers[J]. Journal of Textile Research, 2014, 35(11): 6-12. | |
[3] | 王杰, 汪滨, 杜宗玺, 等. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(Ⅵ)和Pb(Ⅱ)的吸附性能[J]. 纺织学报, 2020, 41(1): 1-7. |
WANG Jie, WANG Bin, DU Zongxi, et al. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II)[J]. Journal of Textile Research, 2020, 41(1): 1-7. | |
[4] | YAN X H, XIAO X, AU C, et al. Electrospinning nanofibers and nanomembranes for oil/water separation[J]. Journal of Materials Chemistry A, 2021, 9(38): 21659-21684. |
[5] | ZHU F, ZHENG Y M, ZHANG B G, et al. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.123608. |
[6] | SONG J, ZHANG B W, LU Z H, et al. Hierarchical porous poly(L-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration[J]. ACS Applied Materials & Interfaces, 2019, 11: 46261-46268. |
[7] | 刘强飞, 黎璠, 杨吉震, 等. 多孔聚乳酸纳米纤维膜的吸油性能研究[J]. 棉纺织技术, 2021, 49(10): 25-28. |
LIU Qiangfei, LI Fan, YANG Jizhen, et al. Study on oil absorption property of porous polylactic acid nanofiber membrane[J]. Cotton Textile Technology, 2021, 49(10): 25-28. | |
[8] | 刘雷艮, 林振锋, 沈忠安, 等. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(2): 7-13. |
LIU Leigen, LIN Zhenfeng, SHEN Zhongan, et al. Oil absorption property of electrospun superfine fibrous membrane[J]. Journal of Textile Research, 2018, 39(2): 7-13. | |
[9] | DENG Y F, ZHANG N, HUANG T, et al. Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocom-plex polylactide fibers via coaxial electrospinning technology[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2021.151619. |
[10] | LU Z H, ZIA Q, MENG J M, et al. Hierarchical porous poly(L-lactic acid)/SiO2 nanoparticles fibrous membranes for oil/water separation[J]. Journal of Materials Science, 2020, 55(34): 16096-16110. |
[11] |
ZHANG D, ZHANG N, MA F F, et al. One-step fabrication of functionalized poly(L-lactide) porous fibers by electrospinning and the adsorption/separation abilities[J]. Journal of Hazardous Materials, 2018, 360: 150-162.
doi: S0304-3894(18)30643-5 pmid: 30099358 |
[12] | ZIA Q, TABASSUM M, LU Z H, et al. Porous poly(L-lactic acid)/chitosan nanofibres for copper ion adsorption[J]. Carbohydrate Polymers, 2019. DOI:10.1016/j.carbpol.2019.115343. |
[13] | ZHOU Z X, LIU L J, YUAN W Z. A superhydrophobic poly(lactic acid) electrospun nanofibrous membrane surface-functionalized with TiO2 nanoparticles and methyltrichlorosilane for oil/water separation and dye adsorption[J]. New Journal of Chemistry, 2019, 43(39): 15823-15831. |
[14] | KANG Y L, ZHANG J, WU G, et al. Full-biobased nanofiber membranes toward decontamination of wastewater containing multiple pollutants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (9): 11783-11792. |
[15] | SONG J, ZHANG B W, LU Z H, et al. Hierarchical porous poly(L-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46261-46268. |
[16] | HUANG C, THOMAS N L. Fabrication of porous fibers via electrospinning: strategies and applications[J]. Polymer Reviews, 2019, 60(4): 595-647. |
[17] | WALTER E D, CHATTOPADHYAY M, MILLHAUSER G L. The affinity of copper binding to the prion protein octarepeat[J]. Biochemistry, 2006, 45(43): 13083-13092. |
[18] | PRAMUAL K, INTASANTA V, CHIRACHANCHAI S, et al. Urethane-linked imidazole-cellulose microcrystals: synthesis and their dual functions in adsorption and naked eye sensing with colorimetric enhancement of metal ions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3686-3695. |
[19] | GORE P M, KANDASUBRAMANIAN B. Heteroge-neous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7457-7479. |
[20] | 万和军, 马明波, 唐志荣, 等. 羧基化改性静电纺天然棕色棉纤维素膜的金属铜离子吸附性能[J]. 纺织学报, 2016, 37(4): 1-6. |
WAN Hejun, MA Mingbo, TANG Zhirong, et al. Cu(Ⅱ) adsorption performance of carboxylation-modified electrospun cellulosic film from naturally brown cotton[J]. Journal of Textile Research, 2016, 37(4): 1-6. | |
[21] | GAO J, DUAN L Y, YANG G H, et al. Manipulating poly(lactic acid) surface morphology by solvent-induced crystallization[J]. Applied Surface Science, 2012, 261: 528-535. |
[22] | 张磊, 左丹英, 易长海, 等. 表面接枝聚乙烯吡咯烷酮的聚乳酸纤维改性[J]. 纺织学报, 2015, 36(5): 13-17. |
ZHANG Lei, ZUO Danying, YI Changhai, et al. Study on surface modification of poly(lactic acid) fiber grafted with polyvinylpyrrolidone[J]. Journal of Textile Research, 2015, 36(5): 13-17. | |
[23] | LIU R H, CHE X F, CHEN X, et al. Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs[J]. Sustainable Energy & Fuels, 2020, 4(12): 6066-6074. |
[24] | GUMUSDERELIOGLU M, DALKIRANOGLU S, AYDIN R S T, et al. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix[J]. Journal of Biomedical Materials Research Part A, 2011, 98A(3): 461-472. |
[25] | BRUNETTE C M, HSU S L, MACKNIGHT W J. Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers[J]. Macromolecules, 1982, 15: 71-77. |
[26] | ZHU J, TANG D X, LU Z H, et al. Ultrafast bone-like apatite formation on highly porous poly(L-lactic acid)-hydroxyapatite fibres[J]. Materials Science and Engineering C:Materials for Biological Applications, 2020. DOI:10.1016/j.msec.2020.111168. |
[27] | WANG F, DAI J W, HUANG L Q, et al. Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for anti-fouling water disinfection[J]. ACS Nano, 2020, 14(7): 8975-8984. |
[28] | TAKAFUJI M, IDE S, IHARA H, et al. Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions[J]. Chemistry of Materials, 2004, 16(10): 1977-1983. |
[29] | SELAMBAKKANNU S, OTHMAN N A F, ABU BAKAR K, et al. A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft bananafiber[J]. Radiation Physics and Chemistry, 2018, 153: 58-69. |
[30] | PEKEL N, GUVEN O. Separation of heavy metal ions by complexation on poly(N-vinyl imidazole) hydrogels[J]. Polymer Bulletin, 2004, 51(4): 307-314. |
[31] | WANG R X, MEN J Y, GAO B J. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion[J]. Clean-Soil Air Water, 2012, 40(3): 278-284. |
[1] | 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25. |
[2] | 戴佳洋, 胡亿丰, 王雨静, 伍冬平, 卞幸儿, 许建梅. 丝织物精练阶段的碳足迹核算与评价[J]. 纺织学报, 2024, 45(08): 190-197. |
[3] | 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43. |
[4] | 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53. |
[5] | 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17. |
[6] | 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115. |
[7] | 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141. |
[8] | 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239. |
[9] | 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23. |
[10] | 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209. |
[11] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[12] | 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38. |
[13] | 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34. |
[14] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
[15] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
|