纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 116-126.doi: 10.13475/j.fzxb.20230200101

• 纤维材料 • 上一篇    下一篇

富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能

闫迪1,2, 王雪芳1,2,3(), 谭文萍1,2, 高国金1,2, 明津法1,2,3,4, 宁新2,3   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 非织造材料与产业用纺织品创新研究院, 山东 青岛 266071
    3.山东省特型非织造材料工程研究中心, 山东 青岛 266071
    4.生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2023-02-01 修回日期:2023-06-30 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王雪芳(1989—),男,讲师,博士。研究方向为可降解高分子纤维材料功能改性及应用。E-mail:qdwangxuefang@163.com
  • 作者简介:闫迪(1999—),女,硕士生。主要研究方向为纤维材料的开发与应用。
  • 基金资助:
    国家重点研发计划项目(2021YFB3801905);生物多糖纤维成形与生态纺织国家重点实验室课题(RZ2000003348);山东省博士后创新项目(SDCX-ZG-202203011);青岛市博士后应用研究项目(QDBSH20210200043)

Preparation of porous poly(L-lactic acid) nanofiber membranes with rich imidazole groups and dual performances in water purification

YAN Di1,2, WANG Xuefang1,2,3(), TAN Wenping1,2, GAO Guojin1,2, MING Jinfa1,2,3,4, NING Xin2,3   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shandong Special Nonwoven Materials Engineering Research Center, Qingdao, Shandong 266071, China
    4. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao, Shandong 266071, China
  • Received:2023-02-01 Revised:2023-06-30 Published:2024-08-15 Online:2024-08-21

摘要:

为开发具有油水分离和吸附重金属离子双重功能的新型膜材料,利用静电纺丝技术制备左旋聚乳酸(PLLA)纳米纤维膜,再依次采用溶剂诱导结晶和1-(3-氨基丙基)咪唑(API)修饰改性得到富咪唑型多孔PLLA纳米纤维膜,并对其微观形貌、化学基团构成、力学性能和润湿性能进行测试与表征,研究了该纳米纤维膜的油水分离性能和对铜离子的吸附性能。结果表明:当丙酮与水体积比为10∶1、丙酮/水混合溶液用量为0.4 mL/(mg纤维)、处理时间为150 s时,溶剂诱导结晶处理所得PLLA纳米纤维膜中多孔纤维的形貌最佳;API修饰改性并未对多孔纤维的形貌和直径产生过多影响,改性后PLLA纳米纤维膜表面出现的咪唑和酰胺基团能够有效改善其润湿性能,使静态水接触角下降了15.6°;与未改性PLLA纳米纤维膜相比,所制得富咪唑型多孔PLLA纳米纤维膜的脆性有所增加,但其断裂强度仍能达到未改性的PLLA纳米纤维膜断裂强度的96.6%,整体力学性能保持良好;利用该纳米纤维膜可实现有效油水分离,分离通量为1 044.9 L/(m2·h),分离效率可达99.1%,且其对铜离子吸附性能良好,在pH值为6的铜离子溶液中接触24 h后,对铜离子吸附量可达41.46 mg/g。

关键词: 左旋聚乳酸, 多孔纤维, 咪唑改性, 油水分离, 重金属离子吸附, 静电纺丝, 污水处理

Abstract:

Objective Water pollution is a worldwide challenge, and it has attracted much research attention. Poly (L-lactic acid) (PLLA) is a biodegradable polymer displaying excellent prospects in water purification, and it is mostly designed to purify single pollutants displaying limited purification effect on others. Therefore, it is necessary to develop novel PLLA materials with more purifying functions to enhance the applicability of PLLA in water purification. Herein, solvent-induced crystallization and surface modification methods were applied to functionalize PLLA nanofiber membranes (NFMs) to enable oil/water separation and copper ions (Cu2+) adsorption performances.

Method PLLA NFMs were prepared by electrospinning, and were then treated via solvent-induced crystallization to prepare porous PLLA NFMs, followed by N-(3-aminopropyl)-imidazole (API) modification to obtain imidazole-modified PLLA NFMs. The microstructures and chemical compositions of PLLA NFMs were respectively characterized by SEM and FT-IR, and their wettability and mechanical properties were respectively measured on contact angle goniometer and universal material testing machine. Oil/water separation performances of PLLA NFMs were characterized by testing their separation flux and efficiency. Qualitative and quantitative methods were used to evaluate the Cu2+ adsorption performances of imidazole-modified PLLA NFMs.

Results Smooth and straight PLLA fibers with the average diameter of 885 nm were successfully prepared by electrospinning. After solvent-induced crystallization treatment based on the orthogonal experiments, the porous fibers in sample 6 displayed a better morphology than others, and the optimal condition was that the volume ratio of acetone and water was 10∶1, the applied dosage of acetone and water mixed solvent was 0.4 mL/mg, and the treatment time was 150 s. Compared to porous PLLA NFMs, the porous morphology of the imidazole-modified PLLA fibers did not change obviously, and their average diameter about 1 041 nm was close to that of porous fibers, probably owing to the occurrence of imidazole-modification only on the fiber surface without damage to the bulk structure of originally porous fibers. The changes of chemical groups of different PLLA NFMs were illustrated in FT-IR spectra, where the imidazole characteristic peak appeared at 922 cm-1. The new stretching vibration peaks at 1 295 cm-1 and 693 cm-1 were assigned to the amide groups, indicating the success of API modification. The mechanical property results of different PLLA NFMs indicated that the breaking strength of the PLLA NFMs was not affected by modification treatment, although the brittleness of the as-prepared PLLA NFMs increased slightly. The water contact angle of different PLLA NFMs were also scrutinized, and the wettability of the imidazole-modified PLLA NFMs were improved owing to the imidazole and amide groups, which was conducive to the adsorption of ions. The oil/water separation process was successfully achieved using different PLLA NFMs. Compared with pristine PLLA NFMs, the separation flux of the imidazole-modified PLLA NFMs was slightly decreased, while the separation efficiency was improved, which may be caused by the reduction of the effective pore size in the modified PLLA NFMs. The measured separation flux and efficiency of the imidazole-modified PLLA NFMs were 1 044.9 L/(m2·h) and 99.1%, demonstrating their excellent oil/water separation performance. Moreover, the colorimetric method confirmed the Cu2+ adsorption ability of the imidazole-modified PLLA NFMs. The effect of API volume fraction on Cu2+ adsorption performance by imidazole-modified PLLA NFMs was discussed. With the volume fraction of API increased to 10%, the Cu2+ adsorption capacity of imidazole-modified PLLA NFMs gradually increased to 39.27 mg/g. 10% of API volume fraction was chosen because the API volume fractions higher than 10% induced a very limited improvement of Cu2+ adsorption capacity, but was expected to affect the mechanical properties of the NFMs. The results of quantitative determinations indicated that the best solution pH for Cu2+ adsorption was 6. The adsorption equilibrium could be achieved after 12 h, and the maximum adsorption capacity was 41.46 mg/g after adsorption for 24 h at pH 6, indicating the good Cu2+ adsorption property of the imidazole-modified PLLA NFMs.

Conclusion In this paper, porous PLLA NFMs with rich imidazole groups were prepared by the combination of electrospinning, solvent-induced crystallization and API modification. The various characterizations had demonstrated the successful preparation of imidazole-modified PLLA NFMs that exhibited well mechanical property and an improved wettability. The separation flux of the imidazole-modified PLLA NFMs reached 1 044.9 L/(m2·h) and the separation efficiency was up to 99.1%, which indicated their excellent oil/water separation performances. The qualitative and quantitative tests proved the good Cu2+ adsorption performance of the imidazole-modified PLLA NFMs, and the maximum of Cu2+ adsorption capacity reached up to 41.46 mg/g. In summary, the imidazole-modified PLLA NFMs possessed both oil/water separation and Cu2+ adsorption performance, and displayed promising application prospects in water purification.

Key words: poly(L-lactic acid), porous fiber, imidazole-modification, oil/water separation, adsorption of heavy metal ion, electrospinning, sewage treatment

中图分类号: 

  • TS171

图1

富咪唑型多孔PLLA纳米纤维膜制备示意图 注:①溶剂诱导结晶; ②咪唑修饰。"

表1

因素水平表"

水平 A
丙酮与水的
体积比
B
丙酮/水混合溶液用量/
(mL·(mg纤维)-1)
C
处理时间/s
1 5∶1 0.2 150
2 10∶1 0.3 300
3 20∶1 0.4 600

表2

正交试验方案"

样品号 A B C
1# 1 1 1
2# 1 2 2
3# 1 3 3
4# 2 1 2
5# 2 2 3
6# 2 3 1
7# 3 1 3
8# 3 2 1
9# 3 3 2

图2

纯PLLA纳米纤维膜的SEM照片与纤维直径分布图"

图3

不同试验条件处理所得多孔PLLA纳米纤维膜的SEM照片"

图4

咪唑PLLA纳米纤维膜的SEM照片与纤维直径分布图"

图5

不同PLLA纳米纤维膜的红外光谱图"

图6

不同PLLA纳米纤维膜的应力-应变曲线"

表3

不同PLLA纳米纤维膜的力学性能"

样品名称 断裂强度/MPa 断裂伸长率/%
纯PLLA纳米纤维膜 1.75 160.72
多孔PLLA纳米纤维膜 1.74 94.46
咪唑PLLA纳米纤维膜 1.69 46.95

图7

不同PLLA纳米纤维膜的静态水接触角"

图8

油水分离测试过程"

表4

不同PLLA纳米纤维膜的油水分离性能"

样品名称 分离通量/
(L·m-2·h-1)
分离效
率/%
纯PLLA纳米纤维膜 1 784.7 98.5
多孔PLLA纳米纤维膜 1 107.9 99.6
咪唑PLLA纳米纤维膜 1 044.9 99.1

图9

咪唑PLLA纳米纤维膜的Cu2+吸附效果比色对照图"

图10

不同因素对咪唑PLLA纳米纤维膜Cu2+吸附量的影响"

[1] CHEN H S, HUANG M H, LIU Y B, et al. Functionalized electrospun nanofiber membranes for water treatment: a review[J]. Science of the Total Environment, 2020. DOI:10.1016/j.scitotenv.2020.139944.
[2] 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014, 35(11): 6-12.
WANG Zhe, PAN Zhijuan. Porous structure and air filtration performance of electrospun PLA fibers[J]. Journal of Textile Research, 2014, 35(11): 6-12.
[3] 王杰, 汪滨, 杜宗玺, 等. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(Ⅵ)和Pb(Ⅱ)的吸附性能[J]. 纺织学报, 2020, 41(1): 1-7.
WANG Jie, WANG Bin, DU Zongxi, et al. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II)[J]. Journal of Textile Research, 2020, 41(1): 1-7.
[4] YAN X H, XIAO X, AU C, et al. Electrospinning nanofibers and nanomembranes for oil/water separation[J]. Journal of Materials Chemistry A, 2021, 9(38): 21659-21684.
[5] ZHU F, ZHENG Y M, ZHANG B G, et al. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.123608.
[6] SONG J, ZHANG B W, LU Z H, et al. Hierarchical porous poly(L-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration[J]. ACS Applied Materials & Interfaces, 2019, 11: 46261-46268.
[7] 刘强飞, 黎璠, 杨吉震, 等. 多孔聚乳酸纳米纤维膜的吸油性能研究[J]. 棉纺织技术, 2021, 49(10): 25-28.
LIU Qiangfei, LI Fan, YANG Jizhen, et al. Study on oil absorption property of porous polylactic acid nanofiber membrane[J]. Cotton Textile Technology, 2021, 49(10): 25-28.
[8] 刘雷艮, 林振锋, 沈忠安, 等. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(2): 7-13.
LIU Leigen, LIN Zhenfeng, SHEN Zhongan, et al. Oil absorption property of electrospun superfine fibrous membrane[J]. Journal of Textile Research, 2018, 39(2): 7-13.
[9] DENG Y F, ZHANG N, HUANG T, et al. Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocom-plex polylactide fibers via coaxial electrospinning technology[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2021.151619.
[10] LU Z H, ZIA Q, MENG J M, et al. Hierarchical porous poly(L-lactic acid)/SiO2 nanoparticles fibrous membranes for oil/water separation[J]. Journal of Materials Science, 2020, 55(34): 16096-16110.
[11] ZHANG D, ZHANG N, MA F F, et al. One-step fabrication of functionalized poly(L-lactide) porous fibers by electrospinning and the adsorption/separation abilities[J]. Journal of Hazardous Materials, 2018, 360: 150-162.
doi: S0304-3894(18)30643-5 pmid: 30099358
[12] ZIA Q, TABASSUM M, LU Z H, et al. Porous poly(L-lactic acid)/chitosan nanofibres for copper ion adsorption[J]. Carbohydrate Polymers, 2019. DOI:10.1016/j.carbpol.2019.115343.
[13] ZHOU Z X, LIU L J, YUAN W Z. A superhydrophobic poly(lactic acid) electrospun nanofibrous membrane surface-functionalized with TiO2 nanoparticles and methyltrichlorosilane for oil/water separation and dye adsorption[J]. New Journal of Chemistry, 2019, 43(39): 15823-15831.
[14] KANG Y L, ZHANG J, WU G, et al. Full-biobased nanofiber membranes toward decontamination of wastewater containing multiple pollutants[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (9): 11783-11792.
[15] SONG J, ZHANG B W, LU Z H, et al. Hierarchical porous poly(L-lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46261-46268.
[16] HUANG C, THOMAS N L. Fabrication of porous fibers via electrospinning: strategies and applications[J]. Polymer Reviews, 2019, 60(4): 595-647.
[17] WALTER E D, CHATTOPADHYAY M, MILLHAUSER G L. The affinity of copper binding to the prion protein octarepeat[J]. Biochemistry, 2006, 45(43): 13083-13092.
[18] PRAMUAL K, INTASANTA V, CHIRACHANCHAI S, et al. Urethane-linked imidazole-cellulose microcrystals: synthesis and their dual functions in adsorption and naked eye sensing with colorimetric enhancement of metal ions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3686-3695.
[19] GORE P M, KANDASUBRAMANIAN B. Heteroge-neous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7457-7479.
[20] 万和军, 马明波, 唐志荣, 等. 羧基化改性静电纺天然棕色棉纤维素膜的金属铜离子吸附性能[J]. 纺织学报, 2016, 37(4): 1-6.
WAN Hejun, MA Mingbo, TANG Zhirong, et al. Cu(Ⅱ) adsorption performance of carboxylation-modified electrospun cellulosic film from naturally brown cotton[J]. Journal of Textile Research, 2016, 37(4): 1-6.
[21] GAO J, DUAN L Y, YANG G H, et al. Manipulating poly(lactic acid) surface morphology by solvent-induced crystallization[J]. Applied Surface Science, 2012, 261: 528-535.
[22] 张磊, 左丹英, 易长海, 等. 表面接枝聚乙烯吡咯烷酮的聚乳酸纤维改性[J]. 纺织学报, 2015, 36(5): 13-17.
ZHANG Lei, ZUO Danying, YI Changhai, et al. Study on surface modification of poly(lactic acid) fiber grafted with polyvinylpyrrolidone[J]. Journal of Textile Research, 2015, 36(5): 13-17.
[23] LIU R H, CHE X F, CHEN X, et al. Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs[J]. Sustainable Energy & Fuels, 2020, 4(12): 6066-6074.
[24] GUMUSDERELIOGLU M, DALKIRANOGLU S, AYDIN R S T, et al. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix[J]. Journal of Biomedical Materials Research Part A, 2011, 98A(3): 461-472.
[25] BRUNETTE C M, HSU S L, MACKNIGHT W J. Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers[J]. Macromolecules, 1982, 15: 71-77.
[26] ZHU J, TANG D X, LU Z H, et al. Ultrafast bone-like apatite formation on highly porous poly(L-lactic acid)-hydroxyapatite fibres[J]. Materials Science and Engineering C:Materials for Biological Applications, 2020. DOI:10.1016/j.msec.2020.111168.
[27] WANG F, DAI J W, HUANG L Q, et al. Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for anti-fouling water disinfection[J]. ACS Nano, 2020, 14(7): 8975-8984.
[28] TAKAFUJI M, IDE S, IHARA H, et al. Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions[J]. Chemistry of Materials, 2004, 16(10): 1977-1983.
[29] SELAMBAKKANNU S, OTHMAN N A F, ABU BAKAR K, et al. A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft bananafiber[J]. Radiation Physics and Chemistry, 2018, 153: 58-69.
[30] PEKEL N, GUVEN O. Separation of heavy metal ions by complexation on poly(N-vinyl imidazole) hydrogels[J]. Polymer Bulletin, 2004, 51(4): 307-314.
[31] WANG R X, MEN J Y, GAO B J. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion[J]. Clean-Soil Air Water, 2012, 40(3): 278-284.
[1] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[2] 戴佳洋, 胡亿丰, 王雨静, 伍冬平, 卞幸儿, 许建梅. 丝织物精练阶段的碳足迹核算与评价[J]. 纺织学报, 2024, 45(08): 190-197.
[3] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[4] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[5] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[6] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[7] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[8] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[9] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[10] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[11] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[12] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[13] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[14] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[15] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!