纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 142-149.doi: 10.13475/j.fzxb.20230405401

• 纺织工程 • 上一篇    下一篇

纳米纤维包芯纱截面方向热湿耦合传递过程的模拟

何满堂, 郭俊泽, 王黎明(), 覃小红   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2023-04-26 修回日期:2024-05-06 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王黎明(1988—),男,研究员,博士。主要研究方向为静电纺纳米纤维集合体的可控制备及应用。E-mail:wangliming@dhu.edu.cn
  • 作者简介:何满堂(1991—),男,博士生。主要研究方向为光热转换功能纤维。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232023A-05);东华大学博士研究生创新基金项目(CUSF-DH-D-2022039)

Simulation of coupled thermal-moisture transfer in cross-section of nanofiber core-spun yarns

HE Mantang, GUO Junze, WANG Liming(), QIN Xiaohong   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-04-26 Revised:2024-05-06 Published:2024-08-15 Online:2024-08-21

摘要:

针对纳米纤维包芯纱截面热湿耦合传递过程难以直接测试的问题,利用有限元仿真软件COMSOL对纳米纤维包芯纱的截面进行建模及参数化设置,使用多物理场耦合的方式模拟了纳米纤维包芯纱截面方向的热湿传递过程,以探寻水分和热量在纱线内部传递的规律。建立了不同纳米纤维含量及孔径的纳米纤维包芯纱模型,探寻热湿耦合传递速度的影响因素与规律。研究结果表明:相同时间内纱线内部水分传递速度快于热量的传递,且在相同的流入速度下,纳米纤维的引入能够加速水分在纳米纤维包芯纱中的传递速度,比棉纱的水分传递速度提高了28.3%;此外,适当增加纳米纤维的含量,纳米纤维包芯纱的热湿耦合传递速度有一定的提高(约11.8%);随着纳米纤维孔径的减小,孔径数量增多,纳米纤维包芯纱的水分传递速度提高至90%(与棉纱相比),传热速度增加显著,证明纳米纤维包芯纱的热湿耦合传递过程中导湿和传热呈现正相关性。

关键词: 纳米纤维包芯纱, 热湿耦合传递, 模拟, 功能性纺织品, 热湿管理纺织品

Abstract:

Objective The selection of fiber or yarn material is very important for the design of thermal-moisture comfort textiles. Compared with traditional yarns, nanofiber core-spun yarns have both the mechanical properties of traditional yarns and the surface effect and small size effect of nanofibers, which is beneficial for preparing thermal-moisture management textiles. In order to control thermal-moisture management performance of nanofiber core-spun yarn, the theoretical research on thermal-moisture transfer is indispensable. However, the current theoretical research on thermal-moisture management of nanofiber core-spun yarns mainly focuses on the experimental research or mathematical model research, and lacks the simulation research on thermal-moisture transfer process.

Method The finite element software COMSOL, which is suitable for multi-physics coupling, is selected to model and simulate the yarn section direction by finite element simulation method. The section of cotton yarn and nanofiber core-spun yarn are modeled and parameterized, and the thermal-moisture transfer process of yarn section is quantitatively studied by the configuration of laminar flow and heat transfer physical field.

Results The cross-section models with different parameters of traditional yarn (cotton yarn) and nanofiber (polyacrylonitrile nanofiber) core-spun yarn were established by using the geometric modeling function of COMSOL software, after multi-physical field coupling numerical calculation. Under the condition of the same inflow velocity, the average outflow velocity of PAN nanofiber core-spun yarn was 0.006 8 m/s, while that of cotton yarn was 0.005 3 m/s. At the center line position of the model, when the temperature was the same, the nanofiber core-spun yarn transferred farther, indicating that PAN nanofiber core-spun yarn had faster thermal transfer capacity than the cotton yarn. In order to explore the effect of nanofiber content on the thermal and moisture coupling transfer performance of yarns, a physical model of a yarn with nanofiber core and with different layers was designed. The simulation results show that increasing the number of nanofiber layers (less than 4 layers) can improve the boundary flow rate of the nanofiber cored yarn and speed up the water transfer process, mainly because the increase of the number of nanofiber layers leads to the increase of water transfer distance. In addition, thermal transfer across yarn sections was not significantly different due to the small difference in water transfer velocity. To explore the effect of pore size on the thermal-moisture coupling transfer of nanofiber core-spun yarns, physical models of four types of nanofiber core-spun yarns with different pore sizes were established. With apertures from 3.9 to 0.9 μm, the average water transfer velocity of nanofiber core-spun yarn gradually was changed from 0.006 8 m/s to 0.01 m/s, and the water transfer velocity was almost doubled compared with cotton yarn. Due to the difference in water transfer, the heat transfer distance became larger. Through the above results, it is further proved that there is a positive correlation between heat and humidity coupling transfer.

Conclusion The finite element software COMSOL, which is suitable for multi-physical field coupling, is used to model the longitudinal cross-section direction of yarn and simulate the coupled thermal-moisture transfer process along the yarn cross-section direction, and the speed of thermal and moisture transfer in yarn is quantitatively studied. The theoretical results show that the thermal only transfers half of the distance when the water is transferred to the boundary during the same time, indicating that the water transfer speed is faster than the heat transfer. At the same inflow rate, the moisture transfer rate is higher through the PAN nanofiber core-spun yarn due to the introduction of nanofibers, which is 28.3% higher than that of cotton yarn. The influence of nanofiber content and nanofiber diameter on the thermal-moisture coupling transfer performance was explored. The thermal-moisture coupling transfer speed of nanofiber core-spun yarn (about 11.8%) when the number of nanofiber layers is increased to four layers, but the effect is not significant. With the decrease of the diameter of the nanofiber and the increase of the number of the aperture, the moisture transfer rate of the nanofiber core-spun yarn is increased to 90% (compared with cotton yarn), and the thermal rate is increased significantly, which further proves that the moisture transfer and heat transfer of the nanofiber core-spun yarn present a positive correlation. Through the simulation of thermal-moisture coupling transfer process of nanofiber core-spun yarn, the mechnaism and influencing factors of thermal and moisture transfer in yarn cross-section direction are revealed, which provides ideas for the design of functional textiles such as moisture absorption and quick drying, waterproof and permeable.

Key words: nanofiber core-spun yarn, coupled thermal-moisture transfer, simulation, functional textile, thermal comfort management

中图分类号: 

  • TS104.76

图1

纱线截面模型"

图2

纱线截面水分传递随时间变化过程"

图3

水分在纱线截面的边界流速"

图4

纱线截面热量传递随时间变化过程"

图5

相同时间纱线截面中心线温度分布"

图6

不同纳米纤维含量的纳米纤维包芯纱截面模型"

图7

水分在不同纳米纤维含量的纳米纤维包芯纱中的边界流速"

图8

不同纳米纤维含量的纳米纤维包芯纱在相同时间中心线温度分布"

图9

不同纳米纤维孔径的纳米纤维包芯纱截面模型"

图10

水分在不同纳米纤维孔径的纳米纤维包芯纱中的边界流速"

图11

不同孔径纳米纤维包芯纱在相同时间中心线温度分布"

[1] ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954
[2] PENG Y, LI W, LIU B, et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management[J]. Nature Communications, 2021, 12(1): 6122.
doi: 10.1038/s41467-021-26384-8 pmid: 34675199
[3] WANG Y, YU X, LIU R, et al. Shape memory active thermal-moisture management textiles[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2022.107037.
[4] CHEN J, JIA K, ZHAO Q, et al. Intelligent polyester metafabric for scalable personal hydrothermal self-adaptive adjustment[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.138875.
[5] 陈佳慧, 梅涛, 赵青华, 等. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(1): 30-37.
CHEN Jiahui, MEI Tao, ZHAO Qinghua, et al. Research progress of thermal and wet comfort smart fabric[J]. Journal of Textile Research, 2023, 44(1): 30-37.
[6] FU K, YANG Z, PEI Y, et al. Designing textile architectures for high energy-efficiency human body sweat- and cooling-management[J]. Advanced Fiber Materials, 2019, 1(1): 61-70.
[7] ZHANG X A, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623.
doi: 10.1126/science.aau1217 pmid: 30733415
[8] 刘林玉, 陈诚毅, 王珍玉, 等. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(5): 119-123.
LIU Linyu, CHEN Chengyi, WANG Zhenyu, et al. Thermal and wet comfort of multilayer fabric of fire suit[J]. Journal of Textile Research, 2019, 40(5): 119-123.
[9] MAO N, YE J, QUAN Z, et al. Tree-like structure driven water transfer in 1D fiber assemblies for functional moisture-wicking fabrics[J]. Materials & Design, 2020, 186(2): 680-687.
[10] ZHU Y, TIAN G, LIU Y, et al. Low-cost, unsinkable, and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer[J]. Advanced Science, 2021. DOI:10.1002/advs.202101727.
[11] YANG J, ZHANG X, KOH J J, et al. Reversible hydration composite films for evaporative perspiration control and heat stress management[J]. Small, 2022. DOI:10.1002/smll.202107636.
[12] WANG Y, LIANG X, ZHU H, et al. Reversible water transportation diode: temperature-adaptive smart janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2019, 30(6): 1907851.
[13] MIAO D, CHENG N, WANG X, et al. Sandwich-Structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management[J]. Chemical Engineering Journal, 2022. DOI:10.1002/adfm.201907851.
[14] HE M, LIU H, WANG L, et al. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation[J]. Materials Chemistry Frontiers, 2021, 5(9): 3673-3680.
[15] XIONG J, LI A, LIU Y, et al. Scalable and hierarchically designed MOF fabrics by netting MOFs into nanofiber networks for high-performance solar-driven water purification[J]. Journal of Materials Chemistry A, 2021, 9(37): 21005-21012.
[16] TANG J, WU Y, MA S, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2021.109605.
[17] FONTANA É, DONCA R, MANCUSI E, et al. Mathematical modeling and numerical simulation of heat and moisture transfer in a porous textile medium[J]. Journal of The Textile Institute, 2015, 107(5): 672-682.
[18] ALBERGHINI M, BORISKINA S V, ASINARI P, et al. Characterisation and modelling of water wicking and evaporation in capillary porous media for passive and energy-efficient applications[J]. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.118159.
[19] MAO N, PENG H, QUAN Z, et al. Wettability control in tree structure-based 1D fiber assemblies for moisture wicking functionality[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44682-44690.
[20] CODAU E, CODAU T C, LUPU I G, et al. Heat transfer simulation through textile porous media[J]. Journal of The Textile Institute, 2022, 114(2): 257-264.
[21] 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702.
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of micro-nano fiber/cotton fiber core-spun yarn fabric with different hydrophilic and hydrophobic properties[J]. Journal of Donghua University (Natural Science), 2020, 46(5): 694-702.
[22] MIAO D, CHENG N, WANG X, et al. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling[J]. Nano Letters, 2022, 22(2): 680-687.
doi: 10.1021/acs.nanolett.1c03801 pmid: 34994570
[1] 王皓月, 胡亚宁, 赵健, 杨鹏. 基于蛋白质类淀粉样聚集的纤维表面功能化[J]. 纺织学报, 2024, 45(08): 1-9.
[2] 徐辉, 朱昊, 史红艳. 蜂巢组织的三维结构模拟[J]. 纺织学报, 2024, 45(08): 158-164.
[3] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[4] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[5] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[6] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[7] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[8] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[9] 马逸平, 樊武厚, 胡晓, 王斌, 李林华, 梁娟, 吴晋川, 廖正科. 耐久型水性杂化无氟防水剂的制备及其性能[J]. 纺织学报, 2024, 45(06): 113-119.
[10] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[11] 曹竞哲, 陶晨, 白琳琳. 基于变形网格的织物悬垂形态模拟[J]. 纺织学报, 2024, 45(06): 59-67.
[12] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[13] 程碧莲, 蒋高明, 李炳贤. 三维服装虚拟展示技术的研究进展[J]. 纺织学报, 2024, 45(05): 248-257.
[14] 徐辉, 朱昊, 潘苏情, 史红艳, 应迪. 基于变截面复丝模型的机织物模拟[J]. 纺织学报, 2024, 45(05): 70-78.
[15] 汝欣, 叶筱, 颜才杰, 彭来湖, 史伟民. 袜类三维模型生成编织参数方法及其应用[J]. 纺织学报, 2024, 45(04): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!