纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 173-182.doi: 10.13475/j.fzxb.20230702001

• 纺织工程 • 上一篇    下一篇

针刺/缝合多尺度联锁复合材料I型层间力学行为

陈小明1,2,3, 吴凯杰1,2, 郑宏伟2,3, 张敬义4, 苏星兆2,3, 辛世纪2,3, 郭东升1,2, 陈利1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.天津工业大学 机械工程学院, 天津 300387
    4.航天材料及工艺研究所, 北京 100080
  • 收稿日期:2023-07-10 修回日期:2024-01-23 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 陈利(1968—),男,教授,博士。主要研究方向为纺织复合材料。E-mail:chenli@tiangong.edu.cn
  • 作者简介:陈小明(1984—),男,高级实验师,博士。主要研究方向为纺织机器人装备及纺织复合材料。
  • 基金资助:
    天津市自然科学基金项目(19JCYBJC18300);先进功能复合材料技术重点实验室基金项目(6142906210406)

Mode I interlaminar mechanical behavior of needled/stitched multi-scale interlocking composites

CHEN Xiaoming1,2,3, WU Kaijie1,2, ZHENG Hongwei2,3, ZHANG Jingyi4, SU Xingzhao2,3, XIN Shiji2,3, GUO Dongsheng1,2, CHEN Li1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
    3. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    4. Aerospace Research Institute of Materials & Processing Technology, Beijing 100080, China
  • Received:2023-07-10 Revised:2024-01-23 Published:2024-08-15 Online:2024-08-21

摘要:

为明晰缝合工艺对针刺结构复合材料 I 型层间力学性能的影响,以石英机织布和石英纱线为原料,设计制备了针刺/缝合多尺度联锁织物及复合材料,采用Micro-CT对多尺度联锁织物结构进行表征,进一步研究了多尺度联锁复合材料I型层间力学行为,同时建立了I型层间断裂行为有限元分析模型,阐明了多尺度联锁复合材料的层间强化机制。研究结果表明:相比针刺复合材料,多尺度联锁复合材料的层间载荷值最大提高46.61%,临界能量释放率最大提高55.55%;在缝合矩阵不变的情况下,单束缝合纱线从100 tex增大到200 tex,最大破坏载荷提高了12.91%,临界能量释放率提高了17.8%;随着缝合矩阵增大,总植入量从800 tex增大到1 600 tex后,最大破坏载荷提高了22.8%,临界能量释放率提高了47.3%;此外,多尺度联锁复合材料有限元模型的I型层间断裂模拟结果与实验结果相吻合,最大误差仅为3.1%,建立的有限元模型可较为准确地预测多尺度联锁复合材料Ⅰ型层间失效行为。

关键词: 针刺, 织物, 复合材料, 缝合, 层间强度

Abstract:

Objective Non-felt needled/stitched multi-scale interlocking composites is a new type of fabric structure which enhances interlamainar strength, and it is excepted to meet the working requirements in complex environments such as hypersonic vehicles. However, the effect of stitching process on the mechanical properties of modeⅠinterlaminar property of non-felt needled composites is still unclear. In order to explore the influence of different stitching processes on the interlaminar properties of multi-scale interlocking composites and predict the modeⅠfracture behavior, multi-scale interlocking fabrics and composites are prepared, and a finite element model of modeⅠfracture behavior of multi-scale interlocking composite is established.

Method In this research, quartz yarn and quartz fabrics are used as raw materials for the preparation of the multi-scale interlocking fabrics and composite. According to ASTM D5528 experimental standard, modeⅠfracture behavior was tested with the prepared samples. Micro-CT and scaming electron microswpe(SEM) were used to observe and analyze the fabric structure and fracture morphology of the samples. A finite element model of mode I fracture behavior of multi-scale interlocked composites is established by using the 3 cohesive model.

Results The results showed that the introduction of stitching yarns significantly improved the interlaminar property of needled composites. The maximum interlaminar fracture load of the needled composite reached 81.56 N. The interlaminar fracture load values of multi-scale interlocking composites with different stitching matrices and fiber volume contents were 97.31 N, 107.84 N, and 119.57 N, respectively. Compared with the needled composite, the interlaminar fracture strength was improved by 19.31%-46.61%. The critical energy release rate of needled composite was 1.80 J/m2, and the critical energy release rates of multi-scale interlocking composites with different preparation processes were 1.96 J/m2, 2.24 J/m2 and 2.80 J/m2, respectivey. Compared with the needled composite, this was improved by 8.9%-55.55%. With the same stitching matrix, when the implantation amount of a single stitching yarn was increased from 100 to 200 tex, the maximum interlaminar failure load was increased by 12.91% and the critical energy release rate was increased by 17.8%. The implantation amount of the single stitiching yarn remained unchanged. With the increase of the stitching matrix, the total implantation volume was increased from 800 tex to 1 600 tex, the maximum interlaminar failure load was increased by 22.9% and the critical energy release rate was increased by 47.3%. Micro-CT observation of multi-scale interlocking fabrics revealed that the introduction of stitched and needle punched fiber bundles squeezed the fibers in the substrate, and that stitching yarns through the thickness direction of the fabric worked to achieve effective interlaminar connection. The needled fiber bundle showed T-shape and the interlaminar connection was weaker than that of stitching yarn. The fracture morphology of multi-scale interlocking composite was analyzed. The failure behavior included matrix cracking, fiber pulling out and fiber fracture. The finite element model was used to simulate the mode I fracture behavior of multi-scale interlocking composite, and the simulation results were consistent with the sample results, with a maximum error of only 3.10%.

Conclusion The study showed that compared to the needled composite, the interlaminar fracture performance of multi-scale interlocking composite is significantly improved. The maximum interlayer fracture load was increased by 19.31%-46.61%, and the critical energy release rate was increased by 8.9%-55.55%. The implantation amount of single yarn and the stitching matrix are the main factors affecting the interlaminar performance of multi-scale interlocking composite. The larger the implantation amount of a single bundle of yarn and the larger the stitching matrix, the better the interlaminar performance. The failure modes of multi-scale interlocking composite include matrix cracking, fiber pull-out, and fiber fracture. The error between the finite element simulation results of multi-scale interlocking composite and the actual results is only 3.10%, indicating that the finite element model can accurately predict the mode I interlaminar fracture behavior of multi-scale interlocking composite.

Key words: needling, fabric, composite, stitching, interlaminar strength

中图分类号: 

  • TB332

表1

石英布参数"

材料 结构 面密度/
(g·cm-2)
厚度/
mm
拉伸强度/
(N·(25 mm)-1)
石英基布 缎纹 460 0.45 2 719
石英半切布 斜纹 285 0.30

表2

实验参数"

样品
编号
制备方式 缝合纤维
束的线
密度
缝合间
距/mm
缝合矩
阵行
列数
体积分
数/%
1# 针刺 45.4
2# 针刺/缝合 100 tex×8 3 3×8 46.9
3# 针刺/缝合 200 tex×4 6 3×4 46.9
4# 针刺/缝合 400 tex×4 6 3×4 48.4

图1

多尺度联锁织物制备过程"

图2

多尺度联锁织物观察过程及微观结构"

图3

纤维束直径"

图4

Ⅰ型层间断裂试样"

图5

牵引分离定律"

图6

典型断口形貌扫描电镜照片"

图7

Ⅰ型双悬臂梁模拟方案"

表3

力学性能参数"

材料 E11/
GPa
E22/
GPa
E33/
GPa
G12/
GPa
G13/
GPa
G23/
GPa
v12 v13 v23
树脂 3.45 3.45 3.45 1.28 1.28 1.28 0.35 0.35 0.35
针刺纤维 3.75 3.75 13.49 0.90 1.73 1.73 0.17 0.20 0.20
缝合纤维 4.90 4.90 46.41 2.43 2.39 2.39 0.21 0.21 0.21

图8

有限元模型及网格划分"

图9

针刺复合材料和不同缝合参数多尺度联锁复合材料的载荷-位移曲线"

图10

针刺复合材料和不同缝合参数多尺度联锁复合材料的最大载荷和临界能量释放率对比"

图11

模拟曲线与实验曲线对比"

表4

模拟数据与实验数据最大载荷对比"

样品
编号
最大载荷/N 误差/%
实验值 模拟值
1# 81.56 84.10 3.10
2# 94.43 93.75 0.70
3# 106.32 108.22 1.80
4# 119.57 118.50 0.70
[1] 陈小明, 李晨阳, 李皎, 等. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(5): 185-192.
CHEN Xiaoming, LI Chenyang, LI Jiao, et al. Research progress of three-dimensional needle-punching technology[J]. Journal of Textile Research, 2021, 42 (5): 185-192.
[2] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites:a review[J]. Composites Part A, 2016, 13(2): 12-30.
[3] LACOSTE M Lacoste M, LACOMBE A, JOYEZ P, et al. Carbon/carbon extendible nozzles[J]. Acta Astronautica, 2002, 50(6): 357-367.
[4] 王恒, 张培伟, 徐培飞, 等. 三维针刺SiO2f/SiO2复合材料高温拉-拉疲劳特性[J]. 复合材料学报, 2024, 41(2): 1-10.
WANG Heng, ZHANG Peiwei, XU Peifei, et al. Tensile fatigue of three-dimensional needling SiO2f/SiO2 composites at high temperatures[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1-10.
[5] 刘宇峰, 俸翔, 王金明, 等. 高性能针刺碳/碳复合材料的制备与性能[J]. 无机材料学报, 2020, 35(10): 1105-1111.
doi: 10.15541/jim20190607
LIU Yufeng, FENG Xiang, WANG Jinming, et al. Preparation and properties of high-performance needled C/C composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1105-1111.
doi: 10.15541/jim20190607
[6] 戚云超, 方国东, 周振功, 等. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
doi: 10.11901/1005.3093.2022.171
QI Yunchao, FANG Guodong, ZHOU Zhengong, et al. In-plane tensile strength for needle-punched composites prepared by different needling processes[J]. Chinese Journal of Materials Research, 2023, 37(1): 21-28.
doi: 10.11901/1005.3093.2022.171
[7] YIN D, DENG Y, MA Y, et al. Effect of SiC content on the mechanical behaviour of a three-dimensional needled C/SiC composite[J]. Ceramics International, 2021, 47(17): 25067-25073.
[8] 陈小明, 任志鹏, 郑宏伟, 等. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(4): 100-107.
CHEN Xiaoming, REN Zhipeng, ZHENG Hongwei, et al. A method for improving mechanical properties of needled fabrics based on synergy of pre-needling and main needling[J]. Journal of Textile Research, 2023, 44(4): 100-107.
[9] YAO T, CHEN X, LI J, et al. Significantly improve the interlayer and in-plane properties of needled fabrics by novel none-felt needling technology[J]. Composite Structures, 2021, 274(1): 80-84.
[10] 张小龙, 郭若含, 李钊. 针刺+缝合预制体C/C复合材料的制备及性能研究[J]. 炭素, 2022(3): 10-14.
ZHANG Xiaolong, GUO Ruohan, LI Zhao. Study on preparation and performance of new thickwalled preforms[J]. Carbon, 2022(3): 10-14.
[11] YAO T, CHEN X, LI J, et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures, 2022, 290: 12-18.
[12] CHEN X, ZHENG H, WEI Y, et al. Effect of tufting on the interlaminar bonding behavior of needled composite[J]. Polymer Composites, 2023, 44(1): 229-240.
[13] MI Y, CRISFIELD M A, DAVIES G A O. Progressive delamination composite using interface elements[J]. Journal of Composite Materials, 1998, 32: 1246-1272.
[14] TAPULLIMA J, KIM C H, CHOI J H. Analysis and experiment on DCB specimen using I- fiber stitching process[J]. Composite Structures, 2019, 220: 521-528.
[15] WANG B, WANG Z, LIANG J, et al. Research on tensile properties and size effect of 3D four-directional braided composites[J]. Advanced Materials Research, 2011, 32(s1): 53-59.
[1] 杨瑞华, 邵秋, 王翔. 再循环棉及涤纶短纤维的成纱性能与面料特征[J]. 纺织学报, 2024, 45(08): 127-133.
[2] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[3] 徐辉, 朱昊, 史红艳. 蜂巢组织的三维结构模拟[J]. 纺织学报, 2024, 45(08): 158-164.
[4] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[5] 李天宇, 沈伟, 陈立峰, 竺铝涛. 三维角联锁机织复合材料的制备及其弯曲压缩失效机制[J]. 纺织学报, 2024, 45(08): 183-189.
[6] 戴佳洋, 胡亿丰, 王雨静, 伍冬平, 卞幸儿, 许建梅. 丝织物精练阶段的碳足迹核算与评价[J]. 纺织学报, 2024, 45(08): 190-197.
[7] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[8] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[9] 席立锋, 蒋高明, 马丕波, 贾伟, 张红斌, 王佳冕, 夏风林, 张琦, 刘海桑. 体外膜肺氧合经编膜织物自适应张力的低损伤制备[J]. 纺织学报, 2024, 45(07): 1-9.
[10] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[11] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[12] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[13] 马亮, 俞旭华, 刘文武, 李慈, 方以群, 李俊, 徐佳骏. 气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用[J]. 纺织学报, 2024, 45(07): 181-188.
[14] 李皎, 辛世纪, 陈利, 陈小明. 双工位针刺机器人系统设计[J]. 纺织学报, 2024, 45(07): 204-212.
[15] 袁久刚, 王应雪, 周爱晖, 徐进, 唐颖, 范雪荣. 大型真菌及菌丝体复合材料的应用研究进展[J]. 纺织学报, 2024, 45(07): 223-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!