纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 215-224.doi: 10.13475/j.fzxb.20230403201

• 机械与设备 • 上一篇    下一篇

云边端协同下的织机设备信息采集与监测系统

戴宁1,2, 徐开心1(), 胡旭东1, 徐郁山3   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    3.浙江康立自控科技有限公司, 浙江 绍兴 312500
  • 收稿日期:2023-04-20 修回日期:2023-06-25 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 徐开心(1998—),男,硕士。主要研究方向为纺织智能制造及信息化管理。E-mail:462441109@qq.com
  • 作者简介:戴宁(1991—),男,讲师,博士。主要研究方向为纺织装备智能控制技术。
  • 基金资助:
    浙江省博士后科研项目择优资助一等资助项目(ZJ2021038);浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01065);浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01202);浙江理工大学科研启动基金项目(23242083-Y)

Loom data acquisition and monitoring system under cloud edge collaboration

DAI Ning1,2, XU Kaixin1(), HU Xudong1, XU Yushan3   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing, Zhejiang 312500, China
  • Received:2023-04-20 Revised:2023-06-25 Published:2024-08-15 Online:2024-08-21

摘要:

针对现阶段采用传统单一化上层云端对织造信息进行集中管理,易产生信息传输困难、可靠性低等情况,设计了一套基于云边端协同的织机设备信息采集与监测系统。首先,从中心云端、边缘端和设备终端对系统的总体架构进行设计;再从信息通信协同、数据存储协同和计算服务协同这3个方面对织机设备信息的通信、存储和应用服务展开研究;最后,以石家庄某织布车间的必佳乐OMNIPLUS-340型喷气织机作为测试对象验证系统的可靠性。结果表明,与纯云端通信模式对比,所设计系统平均通信延迟时间下降了20.8 s,平均通信吞吐率下降了446.58 Mb/h,为织造智能化生产提供了高可靠、高质量的数据支撑。

关键词: 智能织造, 云边端协同, 织机, 信息采集, 设备状态监测

Abstract:

Objective In order to improve the reliability of information collection and production control, a loom data acquisition and monitoring system based on cloud edge collaboration was designed. Research was conducted on from three aspects, i.e., information communication collaboration, data storage collaboration, and computing service collaboration, aiming to provide highly reliable and high-quality data support for intelligent production of weaving.

Method In terms of information communication collaboration, this research designed a unified communication module for the underlying terminal information, determines the information communication format of the cloud edge, and developed information communication services for the edge and central cloud. On data storage collaboration, an information model for weaving equipment was defined, and real-time caching data storage solutions for edge end and historical data storage solutions for central cloud end big data were designed. with respect to computing service collaboration, the principle of "demand-based requests at the edge and unified control at the central cloud" was followed to achieve reasonable execution and control of various service applications under cloud edge collaboration.

Results Information communication and processing functions of the central cloud was verified. In order to further reflect the information communication ability of cloud edge collaborative communication, the communication terminals of the underlying devices and the edge end were set up through signal transmission without information analysis and buffering preprocessing, based on the above cloud edge network topology architecture. Communication performance between pure cloud and cloud edge collaborative communication modes was compared, which was concentrated on communication time consumption between pure cloud communication and cloud edge collaborative communication for a total of 102 looms in 17 random groups of devices. Among them, the average communication delay of each group of devices in pure cloud communication mode was 25.54 s, and the average communication delay of each group of devices in cloud edge collaborative communication was 4.74 s. The information upload and download traffic corresponding to 24 h was in two communication modes: pure cloud communication and cloud edge collaborative communication. The average information upload traffic per hour in cloud edge mode was 54.5 Mb/h, and the average download traffic was 365 Mb/h. In the communication processing mode of the central cluster, the average hourly information upload traffic was 111.58 Mb/h, and that for the average download traffic was 754.5 Mb/h. In pure cloud communication, the central cloud server was required to perform identity verification before accessing information to each device, while in cloud edge communication mode, the device terminal and edge end completed the identity verification in advance and cache information. Therefore, the information processing time and transmission consumption flow were much lower in cloud edge communication mode than in pure cloud communication mode, demonstrating superiority of cloud edge collaborative communication mode.

Conclusion At present, the system proposed in this paper has been applied in the actual production environment of the weaving workshop, and the results show that the system is stable and reliable, which can meet the intelligent application requirements in weaving production scenarios and improve the production and operation efficiency of the weaving workshop.

Key words: intelligent weaving, cloud edge collaboration, loom, data acquisition, equipment status monitoring

中图分类号: 

  • TS111.8

图1

云边端协同的织机设备信息采集与监测系统架构图"

表1

织机车间常用机型和对应通信接口"

设备类型 支持协议 通信接口
丰田织机 超文本传输协议(HTTP) 以太网口
意达织机 网络接收应答通信协议(VDI3665) RS422
津田驹织机 文件传输协议(FTP) 以太网口
必佳乐织机 网络串行通信协议(MODBUS-TCP) RS422
新辽织机 远距离无线通信协议(LORA) RS485

图2

异构终端统一通信模块整体结构"

表2

信息结构及信息长度"

开始位
(开始标志位)
信息头 信息体
(数据值内容)
校验码
(CRC校验)
结束位
(结束标志位)
时间戳 服务端ID 客户端ID 信息长度 功能码
2 8 12 12 1 2 不定 2 2

图3

Socket通信库结构类图"

图4

Netty通信原理图"

图5

织造设备信息模型"

图6

边缘端缓存功能结构图"

图7

中心云端信息存储结构图"

图8

边缘端服务需求化请求结构图"

图9

中心云端服务集中化管控结构图"

图10

云边端资源调度策略流程图"

图11

车间网络拓扑图"

图12

织机生产信息表"

图13

通信消耗时间对比图"

图14

通信消耗流量对比图"

[1] 徐盼盼. 中国纺织机械协会圆纬机行业分会“穿针引线”考察:寻求发展交融点锤炼“中国制造”[J]. 纺织机械, 2019, 24(4): 42-43.
XU Panpan. China Textile Machinery Association Round Knitting Machine Industry Branch thread investigation: seek to develop blending point temper chinese manufacturing[J]. Journal of Textile Machinery, 2019, 24(4): 42-43.
[2] 郑宝平, 蒋高明, 夏风林, 等. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(9): 163-169.
ZHENG Baoping, JIANG Gaoming, XIA Fenglin, et al. Design of dynamic tension compensation system for warp knitting based on model prediction[J]. Journal of Textile Research, 2021, 42(9): 163-169.
[3] 张慧霞, 马长青, 代爱明, 等. 织机在线联网采集系统在设备管理中的应用[J]. 棉纺织技术, 2018, 46(10): 32-35.
ZHANG Huixia, MA Changqing, DAI Aiming, et al. Application of online networked loom acquisition system in equipment management[J]. Cotton Textile Technology, 2018, 46(10): 32-35.
[4] 梁世桐. 面向织机集群控制的信息身份识别与传输机制研究[D]. 天津: 河北工业大学, 2022: 19-35.
LIANG Shitong. Research on information identity recognition and transmission mechanism for loom cluster control[D]. Tianjin: Hebei University of Technology, 2022: 19-35.
[5] 高其涛, 沈炜, 卢小杰. 异构织机数据采集系统设计[J]. 工业控制计算机, 2013, 26(2): 43-44.
GAO Qitao, SHEN Wei, LU Xiaojie, et al. Design of data acquisition system for heterogeneous loom[J]. Industrial Control Computer, 2013, 26(2): 43-44.
[6] 田宇. 基于LORA技术的多织机数据监测系统研究[D]. 天津: 河北工业大学, 2022: 2-8.
TIAN Yu. Research on multi loom data monitoring system based on LORA technology[D]. Tianjin: Hebei University of Technology, 2022: 2-8.
[7] 张振鹏. 织机机载状态监测方法研究[D]. 天津: 河北工业大学, 2022: 53-62.
ZHANG Zhenpeng. Research on airborne condition monitoring method of loom[D]. Tianjin: Hebei University of Technology, 2022: 53-62.
[8] 张鸿, 吉泉仲, 王谆, 等. 智能安全驾驶监测系统设计与实现[J]. 计算机测量与控制, 2023, 31(3): 8-14.
ZHANG Hong, JI Quanzhong, WANG Chun, et al. Design and implementation of intelligent safe driving monitoring system[J]. Computer Measurement and Control, 2023, 31(3): 8-14.
[9] 庞子皓. 基于Netty与Kafka的物联网数据采集平台的设计与实现[D]. 南京: 南京邮电大学, 2022: 9-12.
PANG Zihao. Design and implementation of internet of things data acquisition platform based on Netty and Kafka[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022: 9-12.
[10] 李源, 高建军, 王猛, 等. 基于SSM的智能仪器云平台异库数据协同检索机制研究[J]. 物探化探计算技术, 2022, 44(5): 665-670.
LI Yuan, GAO Jianjun, WANG Meng, et al. Research on collaborative retrieval mechanism of different database data in intelligent instrument cloud platform based on SSM[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(5): 665-670.
[11] 赵东明, 邱圆辉, 康瑞, 等. 面向聚合查询的Apache IoTDB物理元数据管理[J]. 软件学报, 2023, 34(3): 1027-1048.
ZHAO Dongming, QIU Yuanhui, KANG Rui, et al. Apache IoTDB physical metadata management for aggregate queries[J]. Journal of Software, 2023, 34(3): 1027-1048.
[12] 张苏宁, 王泽, 马大力. 基于改进蚁群算法的Flexsim衬衣流水线仿真优化[J]. 纺织学报, 2021, 42(3): 155-160.
ZHANG Suning, WANG Ze, MA Dali. Simulation and optimization of Flexsim shirt assembly line based on improved ant colony algorithm[J]. Journal of Textile Research, 2021, 42(3): 155-160.
[1] 方敬兵, 沈敏, 李俊祥, 王真, 余联庆. 纤维束与异形筘内合成气流的相互耦合作用[J]. 纺织学报, 2024, 45(03): 194-201.
[2] 齐育宝, 汝欣, 李建强, 周悦欣, 彭来湖. 基于随机共振-反向传播算法的压电选针器渐变失效检测[J]. 纺织学报, 2024, 45(03): 202-208.
[3] 肖世超, 沈敏, 方敬兵, 王真, 余联庆. 主喷嘴与高速异形孔辅助喷嘴引纬合成流场特性[J]. 纺织学报, 2023, 44(12): 181-188.
[4] 盛晓超, 刘泽旭, 胥光申, 石英男. 线性磁悬浮织针驱动系统运动控制与实验分析[J]. 纺织学报, 2023, 44(12): 197-204.
[5] 戴宁, 梁汇江, 胡旭东, 陆哲昊, 徐开心, 袁嫣红, 屠佳佳, 曾志发. 纬编针织机编织过程中三角振动响应特性[J]. 纺织学报, 2023, 44(10): 181-187.
[6] 杨金, 李麒阳, 季霞, 孙以泽. 复合材料编织-缠绕-拉挤系统建模及其控制策略[J]. 纺织学报, 2023, 44(07): 199-206.
[7] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[8] 彭来湖, 唐麒麟, 戴宁, 胡旭东. 基于二分K-means理论的织机了机预测[J]. 纺织学报, 2023, 44(05): 112-118.
[9] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[10] 王罗俊, 彭来湖, 史伟民, 张伟中. 基于压电黏合体的电磁选针检测技术[J]. 纺织学报, 2022, 43(08): 167-175.
[11] 马训鸣, 李峙毅, 吕广雷, 陈勇洁. 新型夹纱器压电驱动器的运动特性[J]. 纺织学报, 2022, 43(08): 176-182.
[12] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[13] 段金娟, 宣艾祺, 袁博, 李娜娜. 基于感性意象的并条机造型设计[J]. 纺织学报, 2022, 43(04): 160-166.
[14] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[15] 莫帅, 周长鹏, 李旭, 杨振宁, 刘辉华, 高瀚君. 机器人智能关节驱控结构一体化设计方法研究[J]. 纺织学报, 2022, 43(03): 160-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!