纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 225-233.doi: 10.13475/j.fzxb.20230703801

• 机械与设备 • 上一篇    下一篇

经编车间高级计划排程系统及调度算法

黄超1,2, 张剑铭2,3(), 陈豪2,3, 刘维琦2, 张浩宇2, 郭萌2   

  1. 1.福建农林大学 机电工程学院, 福建 福州 350100
    2.中国科学院福建物质结构研究所, 福建 福州 350100
    3.福建省复杂动态系统智能辨识与控制重点实验室, 福建 泉州 362000
  • 收稿日期:2023-07-17 修回日期:2024-01-16 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 张剑铭(1990—),男,工程师,博士。主要研究方向为生产数字化管理及车间调度优化方法。E-mail:zhangjianming@fjirsm.ac.cn
  • 作者简介:黄超(1998—),男,硕士生。主要研究方向为智能制造。
  • 基金资助:
    福建省科技计划项目-STS计划配套项目(2022T3010)

Advanced planning and scheduling system and scheduling algorithm for intelligent warp knitting workshop

HUANG Chao1,2, ZHANG Jianming2,3(), CHEN Hao2,3, LIU Weiqi2, ZHANG Haoyu2, GUO Meng2   

  1. 1. College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350100, China
    2. Fujian Institute of Research on the Structure, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
    3. Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System, Quanzhou, Fujian 362000, China
  • Received:2023-07-17 Revised:2024-01-16 Published:2024-08-15 Online:2024-08-21

摘要:

多品种、小批量、订单化生产已成为纺织行业新常态,为解决现有管理模式与大规模柔性定制管理之间的矛盾,提出基于微服务架构的高级计划与排程(APS)系统,建立APS系统架构体系和功能模块,并基于APS系统的生产计划与调度运行机制,构建考虑最大完工时间和原料更换次数的多目标经编车间调度模型,采用非支配排序遗传算法(NSGA-Ⅱ)加以优化。结果表明:提出的APS系统能够有效地提高经编车间的生产效率,降低生产成本,缩短生产周期和交货期,满足客户需求和市场变化,为纺织生产企业的数字化升级提供了一种可行的解决方案。

关键词: 微服务架构, 高级计划排程系统, 经编车间, 车间调度优化方法, 非支配排序遗传算法, 智能生产

Abstract:

Objective The textile industry gradually shifts towards multi-variety, small-batch, and order-based production, and the traditional production management models no longer meet the demands for flexible customization management in large-scale production environments. This issue is particularly prominent in warp knitting production enterprises with complex and diverse products. To address the issues of low efficiency and incomplete consideration factors in traditional manual scheduling in the warp knitting industry, this paper reports an advanced planning and scheduling (APS) for warp knitting, aiming to effectively improving production continuity and order delivery efficiency.

Method APS system based on microservices architecture for warp knitting workshops is proposed. After elaborating in detail the production planning and scheduling operation mechanism based on APS, a multi-objective warp knitting workshop scheduling model was constructed to minimize the maximum completion time and the number of raw material changes. An optimization algorithm based on Non-dominated Sorting Genetic Algorithm II (NSGAⅡ) is designed and implemented to solve the intelligent allocation problem for large-scale equipment and orders.

Results It is found that APS system can effectively make up for the shortcomings of traditional enterprise resource planning (ERP) and manufacturing execution system (MES) single production planning management mode, which is separated from actual production, lack of production planning and decision support. Through the integration with MES, ERP and other systems, comprehensive data analysis and mining, the development of detailed production plans, to provide decision support for production management. According to the actual production situation, the production process is dynamically adjusted and optimized. Experimental verification shows that the optimization effect of NSGA-II based warp knitting shop scheduling optimization method can reach more than 200% as the scale increases in terms of maximum completion time and the number of raw material changes between orders. Compared with the traditional multi-objective genetic algorithm, the scheduling results of this algorithm for small-scale problems are not much different. However, with the expansion of the problem scale, the optimization ability of the traditional multi-objective genetic algorithm decreases significantly, which may lead to longer optimization time, local optimal solution, loss of excellent properties, and even worse scheduling results than manual scheduling.

Conclusion This paper proposes a warp knitting production APS system based on microservice architecture according to actual production needs. It can meet the complex business processes of warp knitting production and future business expansion, and can monitor and coordinate the management of orders and resources in the warp knitting production process in real time, better meeting the actual needs of the warp knitting workshop. In addition, this paper also uses the NSGA-Ⅱ algorithm to optimize scheduling problems, which can significantly improve production efficiency and continuity, effectively solve the problem of effective allocation of large-scale orders and equipment, and can adapt to further expansion in the future. In summary, the warp knitting production APS system reported in this paper is an efficient and intelligent production management tool with a wide range of application prospects and promotional value.

Key words: micro service architecture, advanced planning and scheduling system, warp knitting shop, workshop scheduling optimization method, non-dominated sorting genetic algorithm, intelligent production

中图分类号: 

  • TP181

图1

APS系统微服务架构"

图2

基于APS的生产计划与调度流程图"

图3

经编生产流程"

表1

经编车间调度参数表"

调度参数 参数描述
i 订单编号,i=1,2,3,…,n
j 经编机编号,j=1,2,3,…,m
n 订单数量
m 经编机台数
u j 机台j上有u个订单
O j k 机台j上的第k个订单
w i j 订单i是否分配到机台j上,   w i j = 0或1
M O j k O j ( k - 1 ) 机台j上第k个订单与第 k - 1个订单需要更换原料的次数
L i 订单i的长度,单位为m
P i 订单i的生产速度,单位为m/min
S i 订单i在经编机j上加工时长,单位为min
C j 机台j加工总时长,单位为min
Q j 机台j更换原料次数

图4

算法流程图"

图5

染色体编码与解码图"

表2

不同规模调度结果对比"

调度规模 th/min tM/min tN/min nh nM nN
20×100 5 753.2±445.8 5 012.4±256.9 3 076.2±167.8 257±79.2 208±52.5 165±31.6
20×200 6 672.4±678.9 5 978.4±424.6 3 453.2±221.5 454±98.3 394±78.3 257±42.4
50×200 6 034.2±899.6 5 987.7±789.7 2 799.3±245.9 607±108.0 413±88.7 206±45.9
50×500 9 023.4±1 478.5 8 876.9±975.9 4 067.2±387.7 1 478±364.7 1 012±339.3 389±78.7
100×500 7 033.2±1 522.3 6 577.9±1 008.2 3 044.5±543.9 1 378±448.9 978±398.9 549±114.5
100×1 000 15 323.2±2 311.6 13 878.7±1 657.6 6 277.9±876.9 2 978±569.8 2 019±421.0 949±289.7
200×1 000 11 562.7±2 981.7 8 089.1±1 879.9 4 907.2±931.2 2 768±643.7 1 867±522.7 879±453.6
200×2 000 19 218.3±3 467.0 12 378.9±2 178.1 8 987±997.2 6 357±1 556.3 5 697±865.8 2 231±525.7
500×2 000 14 232.1±4 436.3 10 238.8±2 679.1 5 789±1 067.7 6 123±1 623.8 5 588±1 548.9 2 312±667.9
500×4 000 23 431.3±5 789.9 17 897.6±3 398.2 10 896±1 564.5 11 272±3 178.1 9 245±1 780.1 4 123±891.0

表3

不同规模调度优化率"

调度规模 R1 R2 R3 R4
20×100 47.0 33.9 55.7 26.1
20×200 63.2 45.1 76.6 53.1
50×200 77.6 60.8 105.3 67.5
50×500 107.9 89.2 158.8 98.4
100×500 131.0 116.1 178.5 112.7
100×1 000 164.3 121.1 236.1 167.5
200×1 000 175.8 155.8 267.4 189.4
200×2 000 196.6 179.3 356.9 243.8
500×2 000 221.4 205.2 389.3 267.1
500×4 000 289.1 268.0 466.1 289.2

图6

最小化最大完工时间最优适应度变化"

图7

最小化订单间原料更换次数最优适应度变化"

图8

帕累托前沿图"

图9

APS系统主要功能模块"

[1] 丁欢, 胡建, 李涵, 等. 新经济常态下纺织行业发展的思考[J]. 中国纤检, 2023, 570(3): 35-37.
DING Huan, HU Jian, LI Han, et al. Thinking on the development of textile industry under the new economic normal[J]. China Fiber Inspection, 2023, 570(3): 35-37.
[2] 纺织行业经济发展形势与“十四五”发展重点[J]. 纺织检测与标准, 2021, 7(1): 45-48.
Textile industry economic development situation and "fourteen five" development focus[J]. Textile Testing and Standards, 2021, 7(1): 45-48.
[3] 刘凯琳. 经编织物在产业用领域的发展及应用[J]. 纺织导报, 2022, 43(5): 27.
LIU Kailin. Development and application of warp-knitted technical textiles[J]. China Textile Leader, 2022, 43(5): 27.
[4] 张洁, 徐楚桥, 汪俊亮, 等. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(9): 1-10.
ZHANG Jie, XU Chuqiao, WANG Junliang, et al. Advancement in data-driven intelligent controlsystem for roboticized textile production[J]. Journal of Textile Research, 2022, 43(9): 1-10.
[5] 朱启, 蒋高明, 丛洪莲, 等. 基于B/S结构的经编MES系统[J]. 纺织学报, 2013, 34(1): 128-132.
ZHU Qi, JIANG Gaoming, CONG Honglian, et al. Development of manufacturing execution system of warp knitting based on B/S mode[J]. Journal of Textile Research, 2013, 34(1): 128-132.
[6] 邵景峰, 贺兴时, 王进富, 等. 大数据环境下的纺织制造执行系统设计[J]. 机械工程学报, 2015, 51(5): 160-170.
doi: 10.3901/JME.2015.05.160
SHAO Jingfeng, HE Xingshi, WANG Jinfu, et al. Design of textile manufacturing execution system based on big data[J]. Journal of Mechanical Engineering, 2015, 51(5): 160-170.
doi: 10.3901/JME.2015.05.160
[7] FACHINI R F, ESPOSTO K F, CAMARGO V C B. A framework for development of advanced planning and scheduling (APS) systems in glass container indu-stry[J]. Journal of Manufacturing Technology Manag-ement, 2018, 29(3): 570-587.
[8] 余建国, 木柏林. 面向机电制造企业的APS系统研究[J]. 机电工程技术, 2022, 51(9): 22-25.
YU Jianguo, MU Bolin. Research on APS system for electromechanical manufacturing enterprises[J]. Electrical Engineering Technology, 2022, 51(9): 22-25.
[9] SERRANO-RUIZ J C, MULA J, POLER R. Smart manufacturing scheduling: a literature review[J]. Journal of Manufacturing Systems, 2021, 61: 265-287.
[10] 卢颖涛. 针织企业染整车间调度方法研究[D]. 上海: 东华大学, 2019: 1-60.
LU Yingtao. Research on dyeing production scheduling in dyeing and finishing workshop of knitting com-pany[D]. Shanghai: Donghua University, 2019: 1-60.
[11] HUYNH N T, CHIEN C F. A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an empirical study[J]. Computers & Industrial Engineering, 2018, 125: 615-627.
[12] 蔡飞飞, 郗欣甫, 沈瑞超, 等. 经编车间过程监控与生产调度[J]. 东华大学学报(自然科学版), 2020, 46(6): 952-958.
CAI Feifei, CHI Xinfu, SHEN Ruichao, et al. Process monitoring and production scheduling in warp knitting workshop[J]. Journal of Donghua University (Natural Science), 2020, 46(6): 952-958.
[13] KIM J G, SONG S, JEONG B J. Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs and sequence-dependent setup times[J]. International Journal of Production Research, 2020, 58(6): 1628-1643.
[14] PANT M, SNASEL V, VERMA S. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2024, 9: 57757-57791.
[15] BANDYOPADHYAY S, BHATTACHARYA R. Solving multi-objective parallel machine scheduling problem by a modified NSGA-II[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6718-6729.
[16] WANG J A, PAN R, GAO W, et al. An automatic scheduling method for weaving enterprises based on genetic algorithm[J]. Journal of The Textile Institute, 2015, 106(12): 1377-1387.
[1] 郑路, 颜伟雄, 胡觉亮, 韩曙光. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(04): 140-146.
[2] 邵景峰, 石小敏. 基于非支配排序遗传算法的细纱工艺参数优化[J]. 纺织学报, 2022, 43(01): 80-88.
[3] 蒋高明 高哲. 针织新技术发展现状与趋势[J]. 纺织学报, 2017, 38(12): 169-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!