纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 121-128.doi: 10.13475/j.fzxb.20230904801

• 染整工程 • 上一篇    下一篇

蒙脱土协同TiO2整理棉织物的功能性

赵强1,2, 刘正江1(), 高晓平1, 张云婷1, 张宏2   

  1. 1.内蒙古工业大学 轻工与纺织学院, 内蒙古 呼和浩特 010080
    2.塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300
  • 收稿日期:2023-09-19 修回日期:2024-05-21 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 刘正江(1988—),男,副教授,博士。研究方向为纺织品功能整理与印染污水处理。E-mail: zhengjliu@imut.edu.cn
  • 作者简介:赵强(1993—),男,硕士生。主要研究方向为纺织品功能整理。
  • 基金资助:
    内蒙古自治区自然科学基金项目(2021BS02017);内蒙古自治区直属高校基本科研业务费资金资助项目(JY20220308)

Functionality of cotton fabrics finished by montmorillonite combined with TiO2

ZHAO Qiang1,2, LIU Zhengjiang1(), GAO Xiaoping1, ZHANG Yunting1, ZHANG Hong2   

  1. 1. College of Light Industry and Textile, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010080, China
    2. College of Mechanical and Electrical Engineering, Tarim University, Aral, Xinjiang 843300, China
  • Received:2023-09-19 Revised:2024-05-21 Published:2024-09-15 Online:2024-09-15

摘要:

为解决TiO2在棉织物表面易团聚而导致光能利用率低的问题,采用蒙脱土与TiO2二者协同对棉织物进行整理,以轧—烘—焙的方式将TiO2和蒙脱土整理到棉织物上,制备了具有紫外线防护、抗老化和自清洁能力的棉织物。借助扫描电子显微镜、傅里叶变换红外光谱仪和紫外可见漫反射光谱仪对整理前后的棉织物进行分析,并通过纺织品紫外线测试仪、白度测试仪及织物风格仪等测试其紫外线防护性能、白度和风格变化。结果表明:整理后棉织物的长波黑斑效应紫外线(UVA)透过率为1.81%,中波红斑效应紫外线(UVB)透过率为0.87%,紫外线防护因子(UPF)为100+,且经50次皂洗后UPF值仍能维持在50+;整理后棉织物的抗老化性能提高了16.7%,具有较好的自清洁性能,其白度、透气性能、断裂强力和风格等有一定程度的损失,但损失不大。

关键词: 二氧化钛, 蒙脱土, 棉织物, 紫外线防护, 自清洁, 功能性纺织品, 功能整理

Abstract:

Objective In order to enable multifunctions of cotton fabrics and reduce agglomeration of TiO2 on cotton fabric surface, TiO2/montmorillonite finishing agent was prepared by sol-gel method at lower temperature using tetrabutyl titanate and montmorillonite as the precursor, aiming to reduce agglomeration of TiO2. At the same time, the reduction of TiO2 consumption was fargetted to increase the added value of montmorillonite products.

Method TiO2/montmorillonite was firstly synthesized using ultrasound-sol-gel method and then deposited onto the surface of cotton fabrics by two-dipping and two-rolling processes. The properties of the cotton fabric before and after treatment were analyzed using Fourier transform infrared (FT-IR) spectrometer and energy dispersive spectrometer, while the surface morphologies of the cotton fabrics were analyzed by scanning electron microscopy. The whiteness, air permeability, breaking strength and elongation of TiO2/montmorillonite-finished cotton fabrics were measured, respectively. In addition, the performance such as hand feel attributes, softness, smoothness and stiffness were measured. Rhodamine B was used as a test contaminant to qualitatively assess the self-cleaning performance of the TiO2/montmorillonite finished cotton fabric.

Results The SEM and EDS results indicated that TiO2/montmorillonite was uniformly distributed on cotton fibers surface. UV-visible diffuse reflectance spectrum result showed that TiO2/montmorillonite finished cotton fabric demonstrated excellent absorption capability to UV light, while the FT-IR result showed that the bonding mode between TiO2/montmorillonite and cotton fiber was formed through covalent bonding. The anti-aging performance test showed that after 96 h UV irradiation, the strength loss of TiO2 finished cotton fabric was 22.9%, while the strength loss of TiO2/montmorillonite finished cotton fabric was 15.4%, indicating that the montmorillonite compound could improve the anti-aging performance of TiO2. The self-cleaning performance test showed that TiO2/montmorillonite finished cotton fabric had satisfactory self-cleaning capability. Nevertheless, compared with raw cotton fabric, the whiteness of TiO2/montmorillonite finished cotton fabric was decreased by 25.8%, the breaking strength decreased by 10.2%, and the air permeability decreased by 5.7%, respectively.

Conclusion A cotton fabric with UV protection, anti-aging, and self-cleaning performances was prepared by applying TiO2 and montmorillonite onto the fabric surface using the rolling-baking-baking process. The result indicated that the UVA transmittance, UVB transmittance, and UPF value of TiO2/montmorillonite finished cotton fabric were 1.81%, 0.87%, and 100+, respectively. Moreover, the UPF value of the treated cotton fabric was still maintained at 50+ after 50 cycles of soap washing, and the fabric's anti-aging performances were increased by 16.7% after post-treatment. Also, the Ti—O—Si bond was formed between TiO2 and montmorillonite, which reduces recombination of electron-hole pairs of TiO2, and effectively controls the TiO2 particle size, thus improving the properties of TiO2 finished cotton fabrics.

Key words: titanium dioxide, montmorillonite, cotton fabric, ultraviolet resistance, self-cleaning, functional textile, functional finishing

中图分类号: 

  • TS195.5

图1

整理前后棉织物的扫描电子显微镜照片(×200)"

图2

整理前后棉织物的能谱图"

表1

棉织物样品中元素含量分析"

样品 元素 质量分数/% 原子分数/%
原棉织物 C 39.63 46.65
O 60.37 53.35
TiO2整理棉织物 C 33.73 42.25
O 58.96 55.45
Ti 7.31 2.30
蒙脱土整理棉织物 C 37.24 44.63
O 60.10 54.06
Al 0.50 0.27
Si 1.86 0.95
Ti 0.31 0.09
TiO2/蒙脱土整理棉织物 C 34.58 43.36
O 57.28 53.93
Al 0.23 0.13
Si 0.45 0.24
Ti 7.47 2.35

图3

整理前后棉织物的红外光谱图"

图4

棉织物的紫外-可见漫反射光谱图"

表2

整理前后棉织物的紫外线防护性能"

织物 UPF值 UVA透过
率/%
UVB透过
率/%
原棉织物 27.3 3.90 3.80
TiO2整理棉织物 30+ 3.26 1.95
蒙脱土整理棉织物 50+ 2.48 1.69
TiO2/蒙脱土整理棉织物 100+ 1.81 0.87

表3

皂洗对棉织物抗紫外线性能的影响"

皂洗
次数
UPF值
原棉
织物
蒙脱土整理
棉织物
TiO2整理
棉织物
TiO2/蒙脱土
整理棉织物
0 27.3 30+ 50+ 100+
10 25.3 30+ 50+ 100+
20 22.4 30+ 50+ 100+
30 19.7 30+ 50+ 50+
40 22.2 27.5 50+ 50+
50 20.5 25.2 50+ 50+

表4

整理前后棉织物的白度和断裂强力"

织物 白度/% 断裂
强力/N
正面 反面
原棉织物 82.46 87.69 309.2
TiO2整理棉织物 70.23 75.26 280.0
蒙脱土整理棉织物 78.54 81.12 299.4
TiO2/蒙脱土整理棉织物 61.2 66.18 277.7

表5

整理前后棉织物的风格"

织物 硬挺度 柔软度 光滑度
原棉织物 47.36 82.73 84.01
TiO2整理棉织物 51.80 79.72 82.77
蒙脱土整理棉织物 50.33 81.77 82.63
TiO2/蒙脱土整理棉织物 51.42 80.20 83.06

图5

整理前后棉织物的抗老化性能"

图6

样品在紫外光下对罗丹明B的自清洁性能"

[1] FERNANDES M, PADRÃO J, RIBEIRO A I, et al. Polysaccharides and metal nanoparticles for functional textiles: a review[J]. Nanomaterials, 2022.DOI:10.3390/nano12061006.
[2] 帅旗, 孙硕, 成世杰, 等. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(8): 126-132.
SHUAI Qi, SUN Shuo, CHENG Shijie, et al. Effect of isocyanate microcapsules on UV protection of carbon quantum dot finished cotton fabrics[J]. Journal of Textile Research, 2023, 44(8): 126-132.
[3] HUANG J Y, LI S H, GE M Z, et al. Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(6): 2825-2832.
[4] WORSLEY D A, SEARLE J R. Photoactivity test for TiO2 pigment photocatalysed polymer degradation[J]. Materials Science and Technology, 2013, 18(6): 681-684.
[5] KUBACKA A, M FERNÁNDEZ-GARCÍA, COLÓN G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chemical Reviews, 2012, 112(3): 1555-1564.
doi: 10.1021/cr100454n pmid: 22107071
[6] BI Z, PARANTHAMAN M P, MENCHHOFER P A, et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries[J]. Journal of Power Sources, 2013, 222: 461-466.
[7] HENYCH J R, STENGL V. Feasible synthesis of TiO2 deposited on kaolin for photocatalytic applications[J]. Clays and Clay Minerals, 2013, 61(3/4): 165-176.
[8] KIL H S, RHEE S W. Synthesis and infrared light reflecting characteristics of TiO2/mica hybrid comp-osites[J]. Journal of the Korean Industrial & Engineering Chemistry, 2016, 27(1): 16-20.
[9] GERASIMOVA LG, MASLOVA M V, SHCHUKINA E S, et al. Mineral layer fillers for the production of functional materials[J]. Materials, 2021. DOI:10.3390/ma14123369.
[10] DE LEÓN M A, RODRÍGUEZ M, MARCHETTI S G, et al. Raw montmorillonite modified with iron for photo-Fenton processes: influence of iron content on textural, structural and catalytic properties[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4742-4750.
[11] DAO T B T, HA T T L, NGUYEN T D, et al. Effectiveness of photocatalysis of montmorillonite-supported TiO2 and TiO2 nanotubes for rhodamine B degradation[J]. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2021.130802.
[12] 杜姗, 魏云航, 谭宇浩, 等. 棉织物的硅溶胶/短链含氟聚丙烯酸酯复合拒水整理[J]. 纺织学报, 2023, 44(9): 153-160.
DU Shan, WEI Yunhang, TAN Yuhao, et al. Water-repellent finishing of cotton fabrics with silica sol and short-chain fluorinated polyacrylic ester[J]. Journal of Textile Research, 2023, 44(9): 153-160.
[13] CHAO H X, SHUN T J, JING Z, et al. Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydro-phobization[J]. Thin Solid Films, 2009, 517(16): 4593-4598.
[14] 余炼钢, 刘衔宇, 陈全莉. “缅绿料”石英质玉的宝石矿物学及谱学表征[J]. 光谱学与光谱分析, 2023, 43(8):2543-2549.
YU Liangang, LIU Xianyu, CHEN Quanli. Gemstone mineralogical and spectroscopic characteristics of quartzose jade ('Mianlü Yu')[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2543-2549.
[15] RAJAN M S, YOON M, THOMAS J. Kaolin-graphene carboxyl incorporated TiO2 as efficient visible light active photocatalyst for the degradation of cefuroxime sodium[J]. Photochemical & Photobiological Sciences, 2022, 21(4): 509-528.
[16] NIE W, RUAN M, GUO D, et al. Design of flexible hydrophobic photocatalytic sheets on polydimethylsiloxane substrates based on carrier migration of Si—O—Ti hybrid bonds for photodegradation of dye molecules[J]. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.156415.
[17] SALEEM M, NAZ M Y, SHUKRULLAH S, et al. Experimental and statistical analysis of dielectric barrier discharge plasma effect on sonochemically TiO2 coated cotton fabric using complete composite design[J]. Current Applied Physics, 2021, 31:158-170.
[18] 杨豆豆, 孟家光, 白亚琴, 等. 纯棉针织物的纳米抗紫外整理[J]. 纺织高校基础科学学报, 2020, 33(2):11-16.
YANG Doudou, MENG Jiaguang, BAI Yaqin, et al. Nano antiultraviolet finishing of cotton knitted fabrics[J]. Basic Sciences Journal of Textile Universities, 2020, 33(2):11-16.
[19] 杨旭, 陈慧. 纤维素/丝素蛋白凝胶改性棉织物的性能[J]. 上海纺织科技, 2023, 51(9):43-50.
YANG Xu, CHEN Hui. Properties of cotton fabric modified with cellulose /silk fibroin gel[J]. Shanghai Textile Science & Technology, 2023, 51(9):43-50.
[20] NAKATA K, FUJISHIMA A. TiO2 photocatalysis: design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3):169-189.
[21] CARDONA Y, WEGRZYN A, MISKOWIEC P. Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.136908.
[1] 王皓月, 胡亚宁, 赵健, 杨鹏. 基于蛋白质类淀粉样聚集的纤维表面功能化[J]. 纺织学报, 2024, 45(08): 1-9.
[2] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[3] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[4] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[5] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[6] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[7] 马逸平, 樊武厚, 胡晓, 王斌, 李林华, 梁娟, 吴晋川, 廖正科. 耐久型水性杂化无氟防水剂的制备及其性能[J]. 纺织学报, 2024, 45(06): 113-119.
[8] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[9] 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22.
[10] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[11] 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137.
[12] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[13] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[14] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[15] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!