纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 194-203.doi: 10.13475/j.fzxb.20230601201

• 机械与设备 • 上一篇    下一篇

异纤分拣机输棉通道结构对气流稳定性的影响

胡胜(), 王紫悦, 张守京   

  1. 西安工程大学 机电工程学院, 陕西 西安 710048
  • 收稿日期:2023-06-09 修回日期:2024-01-11 出版日期:2024-09-15 发布日期:2024-09-15
  • 作者简介:胡胜(1988—),男,副教授,博士。主要研究方向为智能制造质量控制、质量管理与质量工程。E-mail: husheng@xpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(72001166);陕西省自然科学基础研究计划项目(2022JQ-721)

Influence of transport channel structure for foreign fiber sorting machine on airflow stability

HU Sheng(), WANG Ziyue, ZHANG Shoujing   

  1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2023-06-09 Revised:2024-01-11 Published:2024-09-15 Online:2024-09-15

摘要:

针对异纤分拣机输棉通道内部出现气流波动导致后续棉花异纤的检测与剔除效果不佳等问题,对异纤分拣机输棉通道结构与气流稳定性之间的关系进行了研究。利用流体仿真软件Fluent分别对原始输棉通道结构、不同弯管角度与通道入口段长度以及在通道入口增设不同类型面扩散器进行模拟分析,探讨输棉通道在不同方案改进下其内部气流速度分布、压力分布及直通道中心线位置的速度衰减曲线的规律。仿真结果表明:原始输棉通道由于弯管处产生流动方向突变和离心力,导致内外壁面存在压力差使得通道内部流速波动较大;减小弯管角度、增大入口段长度有利于减小压力不均衡分布区域,提升内部气流稳定性;在输棉通道入口增设局部阻力系数最小的双圆弧相切流线型面的缩扩型扩散器,不仅可以减小因型面突变产生的局部阻力,同时可将气流集中在管道中间位置,相较于原始输棉通道气流的波动距离缩短0.3 m。

关键词: 异纤分拣机, 输棉通道, 结构优化, 扩散器, 气流稳定性, 棉花, 异纤

Abstract:

Objective The stability of the airflow inside the channel affects the flow of cotton in the pipe, which in turn affects the subse quent detection and rejection of foreign fibers. The purpose of this paper is to reduce the fluctuation of airflow inside the transport channel and minimize the wall attachment phenomenon on the upper and lower walls of the channel by improving the structure of the transport channel, so that the cotton flow can be transported smoothly inside the channel and improve the efficiency and rejection accuracy of foreign fiber detection.

Method ANSYS software Fluent module is adopted to model the CS808 foreign fiber machine channel structure in equal scale, set the simulation parameters according to the actual working conditions of the foreign fiber machine, use computerized fluid dynamics simulation calculation, analyze the flow field characteristics of the original channel structure, and then propose two improvement options such as changing the curvature combined with the length of the inlet section and adding diffusers and simulate them, and draw velocity profiles to compare the effect before and after the improvement.

Results The simulation results show that: 1) due to the original cotton transport channel structure of the elbow, the pressure difference between the upper and lower walls of the place reached 23 Pa, the velocity field is disordered and the air velocity fluctuation is large, which is not conducive to the smooth transportation of the cotton flow. Therefore, it is proposed to improve the internal airflow stability of the channel by improving its own structural parameters and adding an external diffuser, respectively. 2) Reducing the angle of the bend and increasing the length of the inlet section of the cotton transport channel is conducive to reducing the coverage of the high and low pressure imbalance region at the bend of the channel, which can effectively reduce the velocity difference between the upper and lower walls at the bend, so that the airflow can restore smoothness more quickly. And the quantitative analysis of the channel shows that reducing the angle of the bend is better than changing the length of the channel inlet section to improve the stability of the airflow. 3) In the second optimization scheme, first, three different types of nozzles were screened as the diffuser in this paper; and then the design of the structural parameters of the diffuser into the cotton channel entrance section and simulation analysis, it was found that the addition of the diffuser of the cotton channel can effectively reduce the pipeline wall effect, and will control the flow of cotton in the pipe. It is found that the additional diffuser can effectively reduce the wall effect of the pipe, control the cotton flow in the middle of the pipe, and the pressure and velocity imbalance phenomenon at the bends is significantly improved; in order to reduce the diffuser caused by the resistance caused by the wall transition is not smooth, the section optimization is carried out for the shrinking and expanding diffuser surface, and the double arc tangent section with the smallest coefficient of resistance is screened as the optimal diffuser from the three section improvement schemes; finally, it can be seen that the added diffuser can be used as the optimal diffuser through the simulation experiments. Finally, through simulation experiments, it can be seen that the airflow in the cotton transport channel with the addition of the double arc tangent section diffuser can be stabilized 0.3 m earlier than that in the original cotton transport channel.

Conclusion The unreasonable structure of the original cotton transport channel is the main reason for the fluctuation of cotton flow velocity. By changing the angle of the bend combined with the length of the inlet section and adding a taped and expanded diffuser can effectively reduce the degree of velocity fluctuations inside the pipe and significantly shorten the distance to restore smooth airflow, to a certain extent, to ensure the efficiency of the subsequent detection and rejection of cotton foreign fibers. The degree of improvement of the efficiency of foreign fiber detection and rejection in the practical application of the improvement scheme proposed in this paper needs to be further verified in theory and practical application.

Key words: foreign fiber sorting machine, cotton transport channel, structural optimization, diffuser, airflow stability, cotton, foreign fiber

中图分类号: 

  • TS112.7

图1

输棉通道几何模型"

图2

原始输棉通道云图"

图3

不同角度和入口段长度的输棉通道的云图"

图4

不同型面喷管结构"

图5

不同喷管出口速度云图"

图6

不同喷管中心线速度衰减曲线"

图7

增设缩扩型扩散器的输棉通道结构模型"

图8

增设缩扩型扩散器后输棉通道云图"

图9

不同型面流线扩散器结构图"

表1

不同流线型面扩散器局部阻力系数"

扩散器型面 P1/Pa P2/Pa P3/Pa Δ P 2 - 3/Pa Δ P 1 - 3/Pa V1/(m·s-1) V2/(m·s-1) ξ 1 ξ 2
直线型 12.614 -55.973 -0.051 55.922 12.665 7.428 12.136 0.587 0.355
抛物线型 11.423 -57.204 0.006 57.198 11.417 7.428 12.137 0.601 0.320
双曲线型 16.708 -52.549 -0.097 52.452 16.805 7.428 12.134 0.551 0.471
双圆弧型 12.570 -56.082 -0.019 56.063 12.589 7.762 12.242 0.579 0.323

图10

不同结构输棉通道速度衰减曲线图"

[1] REN W J, DU Y H, LI X L, et al. Design optimization and flow field analysis of the nozzle structure of a foreign fiber sorter[J]. Textile Research Journal, 2022, 92(11/12): 1987-1998.
[2] 姜博艺. 异纤分拣机气流通道的结构优化[D]. 西安: 西安工程大学, 2022: 15-17.
JIANG Boyi. Structural optimization of airflow channels in foreign fiber sorters[D]. Xi'an: Xi'an Polytechnic University, 2022: 15-17.
[3] 姜博艺, 孙戬, 张守京, 等. 异性纤维分拣机输棉通道入口的数值模拟分析[J]. 西安工程大学学报, 2021, 35(2): 48-53,59.
JIANG Boyi, SUN Jian, ZHANG Shoujing, et al. Numerical simulation analysis of the inlet of the cotton transport channel of a heterogeneous fiber sorting machine[J]. Journal of Xi'an Polytechnic University, 2021, 35(2): 48-53,59.
[4] 陈一平. 异纤分拣机气流通道优化设计[D]. 天津: 天津工业大学, 2019: 51-52.
CHEN Yiping. Optimal design of airflow channel for foreign fiber sorting machine[D]. Tianjin: Tiangong University, 2019: 51-52.
[5] CHEN T, YANG K, WU L L. Numerical simulation of the air flow field in the foreign fiber separator[J]. Thermal Science Journal, 2016, 20(3): 953-956.
[6] GAO G L, WANG G J, LIU P C. Distribution of cotton in rectangular pipeline for horizontal foreign fiber removed device[J]. Advanced Materials Research, 2014, 951: 113-119.
[7] 彭震, 胡蓉, 张若宇, 等. 采摘头输棉通道流场仿真与分析[J]. 江苏农业科学, 2020, 48(24): 226-231.
PENG Zhen, HU Rong, ZHANG Ruoyu, et al. Simulation and analysis of flow field in cotton transport channel of picking head[J]. Jiangsu Agricultural Science, 2020, 48(24): 226-231.
[8] 林惠婷, 汪军, 曾泳春. 输棉通道几何参数对转杯纺气流场影响的数值研究[J]. 纺织学报, 2015, 36(2): 98-104.
LIN Huiting, WANG Jun, ZENG Yongchun. Numerical study on the effect of geometric parameters of cotton transfer channel on the airflow field of rotor spin-ning[J]. Journal of Textile Research, 2015, 36(2): 98-104.
[9] 杨瑞华, 何闯, 龚新霞, 等. 转杯纺分梳排杂区的气流场数值模拟[J]. 纺织学报, 2022, 43(10): 31-37,76.
doi: 10.13475/j.fzxb.20210901308
YANG Ruihua, HE Chuang, GONG Xinxia, et al. Numerical simulation of airflow field in combing and debris removal area of rotor spinning[J]. Journal of Textile Research, 2022, 43(10): 31-37,76.
doi: 10.13475/j.fzxb.20210901308
[10] AGARWAL S, GERA D. Study and optimisation of supply duct bend and diffuser in HVAC system for a classroom[C]// International Journal of Innovative Science and Research Technology. India: IJISRT a Digital Library, 2020, 5(7): 988-995.
[11] FANG H F, SUN H L, LIU Q, et al. Optimization analysis of combing box for air yarn based on computational fluid dynamics[J]. Journal of Engineered Fibers and Fabrics, 2022, 17: 1-18.
[12] 朱文硕, 任家智, 冯清国, 等. 棉纺精梳机锡林风道气流规律分析[J]. 棉纺织技术, 2019, 47(10): 15-18.
ZHU Wenshuo, REN Jiazhi, FENG Qingguo, et al. Analysis of airflow pattern in cotton spinning combing machine sillings duct[J]. Cotton Textile Technology, 2019, 47(10): 15-18.
[13] 张宇祥, 夏利娟, 李琳依. 基于流固耦合的气液两相流竖直弯管振动特性数值仿真[J]. 舰船科学技术, 2022, 44(17): 17-22.
ZHANG Yuxiang, XIA Lijuan, LI Linyi. Numerical simulation of vibration characteristics of vertical bends with gas-liquid two-phase flow based on fluid-solid coupling[J]. Ship Science and Technology, 2022, 44(17): 17-22.
[14] 李东前. 矿井通风机扩散器弯头结构处导流板布置方式优化研究[J]. 机械管理开发, 2021, 36(7): 108-109,114.
LI Dongqian. Study on optimization of deflector arrangement method at the elbow structure of mine ventilator diffuser[J]. Machinery Management Development, 2021, 36(7): 108-109,114.
[15] 陈庆光, 徐聪聪, 聂鹏, 等. 导流板布置方式对矿用主要通风机扩散器性能的影响[J]. 煤矿安全, 2021, 52(1): 122-126.
CHEN Qingguang, XU Congcong, NIE Peng, et al. Influence of deflector arrangement method on the performance of main ventilation fan diffusers in mines[J]. Coal Mine Safety, 2021, 52(1): 122-126.
[16] TANG Y, WANG H D, PAN J, et al. Simulation research of airflow in the prefabricated large duct elbow with different deflectors[C]// IOP Conference Series: Earth and Environmental Science. England: IOP Publishing Ltd, 2021: 85-91.
[17] 姜天文, 黄中伟, 李敬彬. 锥直型喷嘴内近壁处流动特性的大涡模拟[J]. 石油科学通报, 2022, 7(3): 420-428.
JIANG Tianwen, HUANG Zhongwei, LI Jingbin. Large eddy simulation of flow characteristics at the near wall inside a conical straight nozzle[J]. Petroleum Science Bulletin, 2022, 7(3): 420-428.
[18] 穆旭. 固体火箭发动机喷管两相流仿真与型面优化研究[D]. 西安: 航天动力技术研究院, 2021: 12-13.
MU Xu. Solid rocket engine nozzle two-phase flow simulation and profile optimization study[D]. Xi'an: Institute of Aerospace Power Technology, 2021: 12-13.
[19] 黄智. 流线型流管无阀压电泵的结构设计及性能研究[D]. 广州: 广州大学, 2021: 13-14.
HUANG Zhi. Structural design and performance study of streamlined flow tube valveless piezoelectric pump[D]. Guangzhou: Guangzhou University, 2021: 13-14.
[1] 白恩龙, 张周强, 郭忠超, 昝杰. 基于机器视觉的棉花颜色检测方法[J]. 纺织学报, 2024, 45(03): 36-43.
[2] 师红宇, 位营杰, 管声启, 李怡. 基于残差结构的棉花异性纤维检测算法[J]. 纺织学报, 2023, 44(12): 35-42.
[3] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[4] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[5] 董超群, 杜玉红, 任维佳, 赵地. 应用光学成像技术检测棉花中异性纤维的研究进展[J]. 纺织学报, 2020, 41(06): 183-189.
[6] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[7] 杜玉红 杨程午 蒋秀明 刘仁杰 蔡文超. 应用聚类神经网络的异纤检测多类光源优化设计[J]. 纺织学报, 2017, 38(10): 104-112.
[8] 林惠婷 汪军 曾泳春. 输棉通道几何参数对转杯纺气流场影响的数值研究[J]. 纺织学报, 2015, 36(02): 98-104.
[9] 姚俊红. 基于H∞滤波的异纤光电信号检测[J]. 纺织学报, 2013, 34(9): 125-0.
[10] 张立杰 寇纪淞 李敏强 彭利. 基于协整理论的棉花价格与纺织生产相关性[J]. 纺织学报, 2012, 33(10): 147-152.
[11] 陈晓妮 汪军 陈庆东. 棉花检测能力认证活动中统计模型的应用[J]. 纺织学报, 2012, 33(10): 33-36.
[12] 叶炜. 基于多波段传感器技术的新型棉花色泽仪研制[J]. 纺织学报, 2010, 31(4): 113-116.
[13] 徐红;夏鑫. 机采棉与手采棉的性能比较[J]. 纺织学报, 2009, 30(9): 5-10.
[14] 姜岩. 异纤度异收缩化纤长丝纺丝原理分析[J]. 纺织学报, 2007, 28(9): 4-7.
[15] 张丽娟;陈兵林;薛晓萍;熊宗伟;周治国. 棉花成纱品质质量模型的评价[J]. 纺织学报, 2005, 26(6): 133-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!