纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 204-211.doi: 10.13475/j.fzxb.20230400701

• 机械与设备 • 上一篇    下一篇

基于奇异值分解算法的非接触纱线张力测量

蒋静1,2, 彭来湖1,3(), 史伟民1,2, 袁豪伟1,2   

  1. 1.浙江理工大学 机械工程学院, 浙江 杭州 310018
    2.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    3.浙江理工大学龙港研究院有限公司, 浙江 温州 325000
  • 收稿日期:2023-04-04 修回日期:2024-04-30 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 彭来湖(1980—),男,副教授,博士。主要研究方向为针织装备控制技术。E-mail: laihup@zstu.edu.cn
  • 作者简介:蒋静(1994—),女,硕士生。主要研究方向为纺织装备自动化。

Non-contact yarn tension measurement based on singular value decomposition algorithm

JIANG Jing1,2, PENG Laihu1,3(), SHI Weimin1,2, YUAN Haowei1,2   

  1. 1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Sci-Tech University Longgang Research Institute, Wenzhou, Zhejiang 325000, China
  • Received:2023-04-04 Revised:2024-04-30 Published:2024-09-15 Online:2024-09-15

摘要:

为解决目前接触式纱线张力检测易对纱线运动产生干扰的现状,设计了基于图像处理的非接触式纱线张力测量系统。使用高速相机结合纱线弦振动理论基础和图像处理技术采集运动状态纱线图像信息。利用奇异值分解算法通过视频图像数据降维、重组振动位移提取、迭代去噪等操作获取振幅频率信息。借助快速傅里叶变换将纱线振动时域特性转换为频域特性并绘制频域图及时域图,最后搭建纱线振动监测实验平台检验算法的可行性和可靠性。结果表明:纱线张力和纱线频率具有正相关性,当纱线张力在50~80 cN之间时,通过对比实验得到算法求解的纱线张力与实际测量的张力绝对误差小于10%,可较好地反映纱线实时张力情况。基于机器视觉的非接触式纱线张力具有安装简单,实时性强,精度高等特点,避免了接触式张力测量方法存在的损伤纱线和测量精度受工艺环境干扰等弊端。

关键词: 奇异值分解算法, 纱线振动, 图像处理, 纱线张力, 非接触式检测

Abstract:

Objective Yarn tension is closely related to product quality and production efficiency. The size and stability of tension run through each process from spinning to manufacturing. The excessive tension of yarn will lead to irreversible deformation of yarn, which will not only increase the yarn breaking rate, but also affect the mechanical strength, surface performance, dyeing performance and process structure of the fabric. The excessive tension of yarn will lead to poor formation of fabric organization, poor structure and poor elasticity. Modern technology requires the size and stability of yarn tension is increasingly high, so it is extremely important to realize the real-time measurement of yarn tension in operation.

Method The singular value decomposition (SVD) algorithm is adopted to obtain the amplitude frequency information by reducing the dimension of video image data, recombining vibration displacement extraction, and iterative denoising. With the help of fast Fourier transform, the yarn vibration time domain characteristics are converted into frequency domain characteristics and draw the frequency domain map, and finally, the yarn vibration monitoring experiment platform is built to test the feasibility and reliability of the algorithm.

Results An experimental set-up was built and experimentally verified to test the feasibility and reliability of the provided scheme. Different yarn running speeds were set and the experimentally derived tensions were compared with the measured tension magnitudes during yarn movement. The results indicated that when the speed of yarn movement was increased, the vibration amplitude of the yarn became smaller, the vibration frequency of the yarn larger, and the tension of the yarn larger. The tension of the yarn and the vibration frequency of the yarn were positively correlated, which is consistent with the theoretical equation of yarn vibration. Statistical results of yarn tension calculated by conventional image processing showed that when the yarn motion speed was 50-70 mm/s, the experimental value of yarn tension was close to the measured value of yarn tension with an absolute error of no more than 4%. However, when the yarn speed exceeded 75 mm/s. the yarn was irreversibly deformed due to the excessive tension and friction between the yarn and mechanical structure such as yarn guide wheels, and the yarn demonstrated a sudden change in the linear density, resulting in an absolute error of more than 10% occurs between the experimental and test values. The algorithm was computationally fast and accurate, and the yarn tension could be measured in real time with good performance.

Conclusion The results of experiments show that the non-contact yarn tension measurement based on machine vision successfully solves the problem of inaccurate tension values caused by the contact between the yarn and the measuring element during the contact yarn tension measurement, and the measurement accuracy can meet the performance requirements of most textile processes for yarn tension.

Key words: singular value decomposition algorithm, yarn vibration, image processing, yarn tension, non-contact detection

中图分类号: 

  • TH145.2

图1

原始图像和灰度图像"

图2

纱线振动视频的奇异值分解 注:t1,t2,…,tn表示各帧子图像;I1,I2,…,Ik表示各帧子图像正交图像基。"

图3

根据SVD算法获取的振动信息 注:C1,C2,…,Ck表示I1,I2,…,Ik对应的振动信息。"

图4

纱线张力测量平台"

图5

不同外力下利用SVD提取静止纱线振动的时域图和领域图"

表1

用SVD算法计算纱线张力结果统计表"

张力测量值/
(10-3 cN)
纱线振动
频率/Hz
张力计算值/
(10-3 cN)
绝对误差/
(10-3 cN)
相对
误差/%
0.784 13.97 0.77 0.137 1.75
1.570 19.97 1.57 0.058 0.38
3.140 27.97 3.09 0.499 1.59
6.370 39.97 6.29 0.843 1.32
7.450 42.97 7.29 1.623 2.18
11.76 53.97 11.51 2.675 2.28
29.40 85.97 25.22 12.191 4.14
53.90 121.30 58.13 41.544 7.71

表2

常规图像处理计算纱线张力结果统计表"

张力测量值/
(10-3 cN)
纱线振动
频率/Hz
张力计算值/
(10-3 cN)
绝对误差/
(10-3 cN)
相对
误差/%
0.784 13.69 0.73 0.441 5.63
1.570 19.69 15.20 0.382 2.44
3.140 28.69 3.24 1.117 3.56
6.370 39.69 6.21 1.548 2.43
7.450 41.69 6.86 5.899 7.92
11.76 52.69 10.89 8.643 7.35
29.40 83.69 27.64 17.649 6.00
53.90 120.69 57.49 35.917 6.66

表3

纱线张力结果统计表"

纱线运动速度/
(mm·s-1)
纱线振动
频率/Hz
张力计算值/
cN
张力测量值/
cN
绝对
误差/%
50 42.97 29.58 30.00 0.06
55 50.97 41.82 41.80 0.04
60 55.97 49.98 50.80 1.61
65 60.97 60.18 61.20 1.67
70 66.97 72.42 74.20 2.39
75 73.97 87.72 95.00 7.66
80 82.97 111.18 120.00 7.35
85 91.97 135.66 150.00 9.56

图6

运动纱线振动频率与纱线张力图"

图7

利用SVD算法提取纱线振动的频率结果"

[1] 缪宇轩. 非接触式张力监测系统的研制与开发[D]. 南京: 航空航天大学, 2020: 3-20.
MIAO Yuxuan. Research and development of non-contact tension monitoring system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 3-20.
[2] 章钰娟. 非接触式纱线张力检测技术研究[D]. 杭州: 浙江理工大学, 2021: 5-10.
ZHANG Yujuan. Research on non-contact yarn tension detection technology[D]. Hangzhou: Zhejiang University of Technology, 2021: 5-10.
[3] 韩帅. 纱线张力精密控制器的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 7-10.
HAN Shuai. Research on precision yarn tension controller[D]. Harbin: Harbin Institute of Technology, 2015: 7-10.
[4] 马勋勋. 纱线动力学若干问题研究[D]. 上海: 东华大学, 2022: 1-18.
MA Xunxun. Research on several problems of yarn dynamics[D]. Shanghai: Donghua University, 2022: 1-18.
[5] 夏港东. 基于FPGA的离线张力监测系统的研制与开发[D]. 南京: 南京航空航天大学, 2021: 9-19.
XIA Gangdong. Research and development of an offline tension monitoring system based on FPGA[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021:9-19.
[6] ELTEX Swenen A B, CALMERKLINT Roland. Signal emiter: WO9959909[P].1999-11-25.
[7] 谢正权. 非接触式纱线卷绕张力动态检测方法的研究[D]. 上海: 东华大学, 2009: 35-48.
XIE Zhengquan. Research on the dynamic testing method of non-contact yarn winding tension[D]. Shanghai: Donghua University, 2009: 35-48.
[8] 张楠, 景军锋. 基于机器视觉的纱线张力检测方法[C]// 2016全国针织技术交流会论文集. 北京: 中国纺织工程学会, 2016: 121-124.
ZHANG Nan, JING Junfeng. Machine vision based yarn tension detection method[C]// Proceedings of the 2016 National Knitting Technology Exchange Conference. Beijing: China Textile Engineering Society, 2016: 121-124.
[9] 张红冉. 纺织机纱线张力与速度检测系统的研究与设计[D]. 武汉: 武汉理工大学, 2010: 50-60.
ZHANG Hongran. Research and design of a yarn tension and speed detection system for textile machines[D]. Wuhan: Wuhan University of Technology, 2010: 50-60.
[10] 李杨, 胡旭东, 彭来湖, 等. 基于哈密顿原理轴向运动纱线的振动特性研究[J]. 纺织学报, 2022, 43(2): 202-207.
LI Yang, HU Xudong, PENG Laihu, et al. Research on the vibration characteristics of axially moving yarns based on Hamilton's principle[J]. Journal of Textile Research, 2022, 43 (2): 202-207.
[11] SACK R A. Transverse oscillations in travelling strings[J]. British Journal of Applied Physics, 1954, 6(5):224-226.
[12] SKUTCH R. Uber die bewegung eines gespannten fadens,welcher gezwungun ist,durch zwei feste punkte mit einer constante geschwindigkeit zu gehen,und zwischen denselben in transversalen schwingungen von gerlinger amplitude versetzt wird[J]. Annalen der Physik und Chemie, 1897,61:190-195.
[13] 周泰. 用谐振频率测量纺丝张力的研究[J]. 自动化仪表, 1987(9): 12-15,36.
ZHOU Tai. Study on measuring spinning tension using resonant frequency[J]. Automation Instrumentation, 1987 (9): 12-15,36.
[14] 顾永恔. 等速输送运动纱线的横向振动分析[J]. 东华大学学报, 1989(5): 67-72.
GU Yongyi. Lateral vibration analysis of moving yarns conveyed at constant velocity[J]. Journal of Donghua University, 1989 (5): 67-72.
[15] 缪宇轩, 孟祥益, 夏港东, 等. 非接触式纱线张力监测系统的研制与开发[J]. 毛纺科技, 2020, 48(5): 71-76.
MIAO Yuxuan, MENG Xiangyi, XIA Gangdong, et al. Development of a non-contact yarn tension monitoring system[J]. Wool Textile Journal, 2020, 48 (5): 71-76.
[16] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社, 2002: 60-68.
YU Weidong, CHU Caiyuan. Textile physics[M]. Shanghai: Donghua University Press, 2002:60-68.
[17] 罗建. 基于高速视觉的振动特征提取方法研究[D]. 芜湖: 安徽工程大学, 2022: 48-50.
LUO Jian. Research on vibration feature extraction method based on high speed vision[D]. Wuhu: Anhui University of Engineering, 2022:48-50.
[18] 郭杰. 基于视觉的振动特征提取算法研究及应用[D]. 合肥: 中国科学技术大学, 2015: 3-10,40-50.
GUO Jie. Research and application of visual based vibration feature extraction algorithm[D]. Hefei: China University of Science and Technology, 2015: 3-10, 40-50.
[1] 庹武, 杜聪, 陈谦, 吴超, 魏新桥, 张欣汝, 刘思雨. 基于计算机视觉与Canny算法的服装纸样轮廓提取[J]. 纺织学报, 2024, 45(05): 174-182.
[2] 杨金鹏, 景军锋, 李吉国, 王渊博. 基于机器视觉的玻璃纤维合股纱缺陷检测系统设计[J]. 纺织学报, 2024, 45(05): 193-201.
[3] 彭来湖, 侯良美, 齐育宝, 汝欣, 刘建廷. 基于自适应Loess的纱线张力信号处理方法[J]. 纺织学报, 2024, 45(02): 246-254.
[4] 戴宁, 梁汇江, 胡旭东, 戚栋明, 徐郁山, 屠佳佳, 史伟民. 插管式机器人空管状态检测方法[J]. 纺织学报, 2023, 44(11): 199-207.
[5] 彭来湖, 刘建廷, 李杨, 齐育宝, 李建强, 茅木泉. 基于卷积滤波的接触式纱线张力测量方法[J]. 纺织学报, 2023, 44(08): 73-80.
[6] 王小虎, 潘如如, 高卫东, 周建. 基于稀疏字典优选的织物疵点检测方法[J]. 纺织学报, 2023, 44(08): 81-87.
[7] 李杨, 彭来湖, 刘建廷, 胡旭东, 郑秋扬. 基于横向振动频率的轴向运动纱线张力测量[J]. 纺织学报, 2023, 44(06): 72-77.
[8] 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146.
[9] 纪越, 潘东, 马杰东, 宋丽梅, 董九志. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(05): 198-204.
[10] 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150.
[11] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[12] 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137.
[13] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[14] 张东剑, 甘学辉, 杨崇倡, 韩阜益, 刘香玉, 谈渊, 廖壑, 王松林. 纺丝过程中非接触式纤维张力检测技术研究进展[J]. 纺织学报, 2022, 43(11): 188-194.
[15] 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!