纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 220-227.doi: 10.13475/j.fzxb.20230504801

• 机械与设备 • 上一篇    下一篇

基于运动合成的旋转变速运动建模及其驱动机构演变

袁汝旺1,2(), 李文豪1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 天津市现代机电装备重点实验室, 天津 300387
  • 收稿日期:2023-05-17 修回日期:2023-12-05 出版日期:2024-09-15 发布日期:2024-09-15
  • 作者简介:袁汝旺(1979—),男,副教授,博士。研究方向为纺织机械设计与机构学。E-mail: yuanruwang@tiangong.edu.cn
  • 基金资助:
    天津市自然科学基金项目(18JCYBJC20200);中国纺织工业联合会应用基础研究项目(J202003)

Modeling of rotary variable motion and shedding driving mechanism based on motion synthesis

YUAN Ruwang1,2(), LI Wenhao1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2023-05-17 Revised:2023-12-05 Published:2024-09-15 Online:2024-09-15

摘要:

为满足织机开口运动停—升—停的工艺特性及其动力学性能,提出一种基于运动合成的旋转变速运动规律构造方法。从组合机构角度提出旋转变速运动驱动机构及其演变,建立不同驱动机构的相对运动传递函数模型。采用目标优化法对旋转变速机构尺寸参数进行设计,在相同的中心距半径和转子臂初始位置的情况下建立优化函数并进行求解。仿真结果表明:偏移系数是影响旋转变速运动的关键参数,且变速运动静止时间、相对位移和速度峰值随偏移系数增加而减小;传递函数是影响旋转变速机构运动特性的重要参数,当偏移系数为0.414 7时,随传动比的减小,转子臂相对位移减小,同时影响旋转变速机构凸轮特性,传动比大于0.9后不能满足旋转变速机构约束条件;用导杆滑块机构和铰接四杆机构对齿轮机构进行代换,可近似实现变速规律相对运动的传递,其传动误差分别为0.010、0.003 rad;通过减小中心距对铰接四杆机构重新优化可以提高旋转变速机构传动性能,满足高速运动需求。

关键词: 运动合成, 旋转变速运动, 驱动变速机构, 偏移系数, 目标优化, 织机开口

Abstract:

Objective In order to achieve and optimize the stop-rise-stop motion characteristics of heald frames to meet the shedding requirements, a variable speed motion model was established and different driving mechanisms adopted to achieve variable speed motion was analyzed. A systematic design method was proposed for the rotating variable speed mechanism with different configurations.

Method Based on the principle of motion synthesis, a method of constructing the rules of movement of the heald frames was proposed. The model of rotating motion was accordingly established to analyze the characteristics of the shedding mechanism under different parameters. From the perspective of mechanism of combination, the rotating-variable-speed motion driving mechanism and its improvement were put forward. The relative motion transfer function models of different heald frame driving mechanisms were established, and the scale optimization was carried out using objective optimization.

Results By comparing and analyzing the motion characteristics of the cycloidal function under different offset coefficients, changing the offset coefficients of the cycloidal function can meet the technological requirements of the loom at different rest times. The cycloidal rest time, relative displacement and velocity extremes decrease with the increase of the offset coefficient, and the acceleration is the least when the offset coefficient (b) is 0.199 1. When the offset coefficient is 0.414 7 and radius of roller (rc) is 31 mm, the kinematic characteristics of the fixed cam-gear rotating transmission mechanism with different gear ratios are analyzed. With the reduction of the transmission ratio, the rotor arm displacement, cam pressure angle and cam curvature also decrease. The dimensional design of the evolved mechanism is carried out by means of objective optimization method, and its motion characteristics are analyzed. When the offset coefficient is 0.414 7 and the transmission ratio is lower than 0.9, the size of the hinged four-bar mechanism satisfying the constraint conditions can be obtained. The transmission ratio of the hinged four-bar mechanism and the guide slider mechanism both fluctuate uniformly above and below the transmission ratio. The transmission ratio range of the guide bar slider mechanism increases with the increase of the transmission ratio, while the transmission ratio range of the hinged four-bar mechanism is small. With the increase of transmission ratio, the error fluctuation of guide bar slider mechanism increases, and the error fluctuation of hinged four-bar mechanism is the smallest when the transmission ratio is 0.90. Under the same transmission ratio, the transmission performance of the guide bar slider mechanism is better than that of the hinged four-bar mechanism. By reducing the center distance of the hinged four-bar mechanism, the transmission performance of the mechanism is improved, the CAM pressure angle is reduced by 2.95%, and the transmission angle of the connecting rod is increased by 2.93%. The maximum diameter of the CAM rod is reduced by 2.90%.

Conclusion In the motion period, the relative angular displacement, angular velocity and angular acceleration curves of the corrected cycloid motion law are continuous without sudden change, and the offset coefficient is the only control parameter, which can meet the different process requirements of loom. When a four-bar mechanism is used instead of a gear mechanism to realize the transmission of relative motion, the transmission of relative motion can only be approximately realized, and the transmission ratio fluctuates within a certain range. By reducing the distance from the center, the size of the rotary gear can be reduced, the transmission performance of the return gear can be improved, and the speed of the loom can be increased.

Key words: motion synthesis, rotary variable speed motion, drive variable speed mechanism, migration coefficient, objective optimization, loom shedding mechanism

中图分类号: 

  • TS1031

图1

摆线函数合成原理"

图2

摆线与修正摆线图"

图3

固定凸轮-齿轮旋转变速机构半示图 注:1—系杆;2—扇形齿轮转子臂;3—固定共轭凸轮;4—中心齿轮。"

图4

齿轮机构代换 注:R1、R2为齿轮机构分度圆半径,mm。"

图5

导杆滑块机构和铰接四杆机构"

图6

转子臂尺寸关系"

表1

约束条件"

杆长约束条件 约束值 约束条件
导杆滑块 l1l4+ lAC φ2max≤30
g1=l1-l2≥0
g2=l1-l3≥0
αmax≤[α]
铰接四杆 g3=l1-l4≥0
g4=l1+l2l3+l4
γmin≥[γ]
g5=l1+l3l2+l4
g6=l1+l4l2+l3
ρminrf
ρb minrc

图7

旋转变速机构输出运动规律"

图8

不同传动比固定凸轮-齿轮旋转变速机构特性"

表2

不同传动尺寸参数"

机构类别 传动比
λ
机构尺寸 机构特征值
l1/mm l'1/mm lBD/mm l3/mm l4/mm φ 2 m a x /(°) αmax /(°) ρmin/mm ρ b m i n/mm γmin /(°)
铰接四杆
机构
0.80 116 33.5 94 79 44 26.559 25.677 57.930 215.355 59.247
0.85 116 33.5 94 78 46 27.929 26.722 57.607 172.845 58.955
0.90 116 33.5 94 75 49 30.00 28.391 57.646 128.151 56.230
0.95 116 33.5 94 75 49 30.00 28.391 57.646 128.151 56.230
1.00 116 33.5 94 75 49 30.00 28.391 57.646 128.151 56.230
导杆滑块
机构
0.80 116 33.5 94 - 52 25.545 24.568 48.231 197.466 60.466
0.85 116 33.5 94 - 54 27.254 25.849 47.107 152.760 59.613
0.90 116 33.5 94 - 56 29.054 27.198 46.049 125.032 58.713
0.95 116 33.5 94 - 58 30.952 28.620 45.063 99.627 57.764
1.00 116 33.5 94 - 59 31.940 29.359 44.596 90.512 57.271

图9

不同优化结果传动比波动曲线"

图10

不同传动比位移误差波动曲线"

图11

优化前后凸轮极径"

[1] FUMEX A, PAGES J P. Modulator mechanism for dobby:US, 5107901[P]. 1992-04-28.
[2] HASÇELIK. Kinematics and dynamic analyzing of the rotary dobby with oscilating shaft moved inter-mittently[D]. Denizli: Pamukkale niversitesi, 2008: 28-79.
[3] 沈毅, 高大牛, 刘春雷. 基于ADMAS 的GT421型多臂机机构动态仿真[J], 纺织学报, 2012, 33(8): 119-123.
SHEN Yi, GAO Daniu, LIU Chunlei. Dynamic simulation of mechanism of GT421 dobby based on ADMAS[J]. Journal of Textile Research, 2012, 33(8): 119-123.
[4] 周国庆, 龚文强, 袁汝旺, 等. 旋转式电子多臂提综机构运动特性分析[J]. 天津工业大学学报, 2019, 38(6): 58-62.
ZHOU Guoqing, GONG Wenqiang, YUAN Ruwang, et al. Kinematic characteristic analysis of rotary electronic dobby heald lifting mechanism[J]. Journal of Tiangong University, 2019, 38(6): 58-62.
[5] EREN Recep, ÖZKAN Gulcan, TURHAN Yidiray. Kinematics of rotary dobby and analysis of heald frame motion in weaving process[J]. Textile Research Journal, 2008, 78(12): 1070-1079.
[6] EREN R, ÖZKAN G, KARAHAN M. Comparison of heald frame motion generated by rotary dobby and crank & cam shedding motions[J]. Fibres & Textiles in Eastern Europe, 2005, 13 (4):78-83.
[7] WER X Y, JIN G, WEI Z, et al. Dynamics analysis of the rigid-flexible coupling comprehensive mechanism for a rotary dobby[J]. Mathematical Problems in Engineering, 2019, 2019(3): 1-14.
[8] YIN Honghuan, YU Hongbin, WANG Lei. Kinematic comparison of a heald frame driven by a rotary dobby with a cam-slider, a cam-link and a null modulator[J]. Autex Research Journal, 2021, 21(3): 323-332.
[9] 罗中华, 杨雨. 揉面机四杆机构的优化设计[J]. 机械设计2013, 30(6): 44-48.
LUO Zhonghua, YANG Yu. Optimization design of four bar mechanism of dough kneading machine[J]. Journal of Machine Design, 2013, 30(6): 44-48.
[10] ÖZGÜN Can, GABİL Abdulla. Design of a new rotary dobby mechanism[J]. Industria Textila, 2019, 69(6):429-433.
[11] 袁汝旺, 祝雷雷, 吕雪奎, 等. 旋转多臂变速运动规律建模及其对开口机构传动影响[J]. 纺织学报, 2019, 40(12):127-133.
doi: 10.13475/j.fzxb.20181203707
YUAN Ruwang, ZHU Leilei, LÜ Xuekui, et al. Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving[J]. Journal of Textile Research, 2019, 40(12): 127-133.
doi: 10.13475/j.fzxb.20181203707
[12] GABIL A, GAMZE S, BILAL R, et al. Research of design's parameters of drive mechanism of RA14 dobby and development of the drive mechanism[J]. Annals of the University of Oradea Fascicle of Textiles Leatherwork, 2013, 14(1): 38-42.
[13] SOONG Renchung. A design method for four-bar mechanisms with variable speeds and length-adjustable driving links[J]. Journal of Advanced Mechanical Design,Systems, and Manufacturing, 2009, 3(4): 312-323.
[14] ABDULLA G, HASCELIK B, PALAMUTCU S, et al. Synthesis work about driving mechanism of a novel rotary dobby mechanism[J]. Tekstil ve Konfeksiyon, 2010, 20(3): 218-224.
[15] HSIEH W. An experimental study on cam-controlled planetary gear trains[J]. Mechanism & Machine Theory, 2007, 42(5): 513-525.
[16] 张远华, 苟向锋, 陈晓芳, 等. 电子多臂机旋转变速机构共轭凸轮再设计[J]. 机械传动, 2018, 42(4):57-61.
doi: 10.16578/j.issn.1004.2539.2018.04.012
ZHANG Yuanhua, GOU Xiangfeng, CHEN Xiaofang, et al. Re-design of conjugated cam for rotating variable speed mechanism of electronic dobby[J]. Journal of Mechanical Transmission, 2018, 42(4): 57-61.
doi: 10.16578/j.issn.1004.2539.2018.04.012
[17] 袁汝旺, 魏晓. 变速驱动下电子开口机构运动学建模及工艺优化[J]. 天津工业大学学报, 2023, 42(1):81-88.
YUAN Ruwang, WEI Xiao. Modeling and craft optimization of electronic shedding mechanism under variable speed drive[J]. Journal of Tiangong University, 2023, 42(1):81-88.
[18] 袁汝旺, 车一骋. 变速引纬规律驱动下剑带变长度非线性振动建模及其响应[J]. 纺织学报, 2022, 43(11):172-178.
doi: 10.13475/j.fzxb.20210800207
YUAN Ruwang, CHE Yicheng. Modeling and response of variable longitudinal nonlinear vibration of rapier belt driven by variable speed weft insertion pattern[J]. Journal of Textile Research, 2022, 43(11):172-178.
doi: 10.13475/j.fzxb.20210800207
[19] 季海彬, 周香琴, 成小军. 基于开口工艺要求的多臂机机构参数分析[J]. 浙江理工大学学报(自然科学版), 2016, 35(2): 205-210.
JI Haibin, ZHOU Xiangqin, CHENG Xiaojun. Analysis on mechanism parameters of dobby based on requirement of opening process[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2016, 35 (2): 205-210.
[1] 沈春娅, 方辽辽, 彭来湖, 梁汇江, 戴宁, 汝欣. 基于自适应模拟退火算法的整经准备车间排产模型[J]. 纺织学报, 2024, 45(03): 81-86.
[2] 潘佳豪, 周其洪, 岑均豪, 李姝佳, 周申华. 服装企业包装订单分配排序优化模型及其快速非支配遗传算法求解[J]. 纺织学报, 2022, 43(05): 156-162.
[3] 沈春娅, 雷钧杰, 汝欣, 彭来湖, 胡旭东. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(04): 74-83.
[4] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[5] 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166.
[6] 袁汝旺, 祝雷雷, 吕雪奎, 杨佳敏. 旋转多臂变速运动规律建模及其对开口机构传动影响[J]. 纺织学报, 2019, 40(12): 127-133.
[7] 孟朔, 潘如如, 高卫东, 王静安, 周利军. 采用主目标进化遗传算法的织造排程研究[J]. 纺织学报, 2019, 40(08): 169-174.
[8] 黄双 郗欣甫 徐洋 孙以泽. 簇绒地毯织机耦联轴系的铰链间隙对毯面绒高的影响[J]. 纺织学报, 2016, 37(08): 132-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!