纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 70-77.doi: 10.13475/j.fzxb.20231008001

• 纺织工程 • 上一篇    下一篇

刺绣心电电极设计与性能分析

陆彤1, 唐虹1(), 赵敏1,2   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.南通大学 杏林学院, 江苏 南通 226236
  • 收稿日期:2023-10-24 修回日期:2024-05-14 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 唐虹(1968—),女,教授,博士。主要研究方向为功能服装与可穿戴智能纺织品。E-mail: 1006529354@qq.com
  • 作者简介:陆彤(1999—),女,硕士生。主要研究方向为智能可穿戴服装。

Design and performance analysis of embroidered electrocardiogram electrode

LU Tong1, TANG Hong1(), ZHAO Min1,2   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Xinglin College, Nantong University, Nantong, Jiangsu 226236, China
  • Received:2023-10-24 Revised:2024-05-14 Published:2024-09-15 Online:2024-09-15

摘要:

为提高刺绣心电电极的灵敏性和稳定性,规范电极设计与应用,分别对刺绣电极的面积、图案、针迹进行设计,并分析其影响要素。采用控制变量的实验方案,分析电极厚度、平整度、皮肤-电极界面阻抗、信噪比、基线稳定时间、基线偏移幅度的变化规律,找出刺绣电极物理特征和电学性能的影响因素。研究结果发现:刺绣电极面积过大或过小都会对其传感灵敏性和捕捉的信号质量造成负面影响;刺绣电极图案越接近圆形其各项性能均越好;成品厚度均匀、表面平整的针迹制备的刺绣电极传感稳定性和信号质量更好;经过优化设计得出的5.3 cm2圆形缎纹针迹刺绣电极,与3M公司生产的2223CN医用电极相比,皮肤-电极界面阻抗降低了1.064 MΩ,信噪比提高了3.133 dB,基线稳定时间缩短了3 s,基线偏移幅度减小0.07 mV,具有良好的外观平整度、电学灵敏性及稳定性。

关键词: 刺绣电极, 智能心电衣, 心电信号, 阻抗, 信噪比, 心电图基线, 镀银锦纶纱线

Abstract:

Objective Embroidery electrode is known to have numerous merits including personalized customization function, good reproducibility, fast and flexible production and reliable electrical performance, and much research attention has been attracted to the development of smart electrocardiograms (ECG). In order to improve the sensitivity and stability of embroidered ECG electrodes and standardize the design and application of electrodes, this paper carries out the design of electrode size, pattern and embroidery type, and analyzes its influence on the physical characteristics and electrical properties of the electrodes.

Method Embroidery electrodes were fabricated by embroidering conductive yarns on textile substrates. The upper and lower surfaces were both covered by the conductive yarn. The embroidery parameters were shown to affect its physical characteristics and appearance, which in turn affected its electrical properties. In this paper,electrode thickness, flatness, skin-electrode interface impedance, signal-to-noise ratio, baseline stability time, and baseline offset amplitude were taken as performance indicators, performances of individual electrodes were tested and analyzed so as to identify and understand the influencing factors.

Results The area, pattern and stitch of the embroidered electrode were found to affect its performance in every aspects. Too large or too small an area would negatively affect its sensing sensitivity and the quality of the captured signal. The diameter of the electrode has a significant impact on the arrangement of machine-embroidered stitches, influencing whether they overlap or are placed side by side; consequently, the electrode's size directly affects its thickness. When the electrode diameter was smaller than 23 mm, the signal-to-noise ratio was found negatively correlated with the thickness of the embroidery electrode. When the diameter increased to 26 mm, the signal-to-noise ratio was increased significantly, and the baseline stabilization time appeared smaller. However, when the diameter was more than 26 mm, the surface deformation of the embroidery electrode became larger when it touched the skin This resulted in decreased signal-to-noise ratio, and increased baseline stabilization time. However, the sensing stability of the embroidered electrode was shown to decrease with the increase of the signal capture pathway, indicating that the larger the area, the greater the amplitude of the ECG baseline shift. For embroidery electrodes with the same surface area, when the pattern of the electrode is closer to a circular pattern, the current in the electrode is distributed more uniformly, so the skin-electrode interface impedance of the electrode is smaller, the signal-to-noise ratio is larger, the baseline stabilization time is shorter, and the magnitude of the baseline shift is smaller. When the electrode area and pattern are the same, embroidery electrodes prepared using embroidery stitches with uniform thickness and flat surface of the finished product have smaller skin-electrode interface impedance, larger signal-to-noise ratio, and smaller baseline shift, in which the baseline stabilization time of the softer samples is shorter. In summary, the final optimized solution was derived as 5.3 cm2 area, circular pattern and satin stitch for embroidery. The preferred embroidered electrode reduced the skin-electrode interface impedance value by 1.064 MΩ, improved the signal-to-noise ratio by 3.161 dB, shortened the baseline stabilization time by 3 s, and reduced the baseline offset amplitude by 0.07 mV when compared with the commercial 3M gel electrode.

Conclusion As a new type of electrode material, the design and performance study of the embroidery electrode area, pattern and embroidery type was studied, the factors influencing the electrode performance were analyzed in detail. By establishing the performance evaluation system of embroidery electrodes, different embroidery electrodes were compared and evaluated. Compared with the commercial 3M gel electrodes, the embroidery electrode prepared by adopting the optimized design demonstrated better electrical properties, with better sensitivity and stability. In addition, the embroidery electrode itself showed improved comfort and better fit to the skin when used. This work provides a useful information for the subsequent research of embroidery electrodes.

Key words: embroidery electrode, smart electrocardiogram, electrocardiogram signal, impedance, signal-to-noise ratio, electrocardiogram baseline, silver coated nylon yarn

中图分类号: 

  • TS941

图1

刺绣电极制备流程图"

图2

不同直径的刺绣电极设计"

图3

刺绣电极图案设计"

图4

刺绣电极针迹设计"

图5

平整度测量分区示意"

图6

皮肤-电极界面阻抗测试"

图7

信噪比测试"

表1

刺绣电极面积设计与物理特征"

电极直径/mm 厚度/mm 平整度
20 2.575 0.049
23 2.700 0.057
26 2.720 0.066
29 2.600 0.114
32 2.668 0.142

表2

刺绣电极电学性能与面积的关系"

电极
直径/
mm
皮肤-电极
界面阻抗/
信噪比/
dB
基线偏移
幅度/mV
基线稳定
时间/s
20 0.399 5.273 0.04 14
23 0.365 4.607 0.04 10
26 0.357 6.328 0.06 5
29 0.397 6.215 0.10 8
32 0.376 5.871 0.11 9

表3

刺绣电极图案设计与物理特征"

电极图案 厚度/mm 平整度
正三角形 2.608 0.145
正四边形 2.579 0.128
正五边形 2.637 0.110
正六边形 2.596 0.082
正八边形 2.610 0.084
圆形 2.622 0.064

表4

刺绣电极电学性能与图案的关系"

电极图案 皮肤-电极
界面阻抗/MΩ
信噪比/
dB
基线偏移
幅度/mV
基线稳定
时间/s
正三角形 0.671 3.372 0.10 14
正四边形 0.577 4.181 0.09 12
正五边形 0.521 4.767 0.09 10
正六边形 0.454 5.419 0.08 8
正八边形 0.427 6.114 0.06 6
圆形 0.357 6.328 0.06 5

表5

刺绣电极针迹设计与物理特征"

针迹类型 厚度/mm 平整度
缎纹针迹 2.283 0.067
径向针迹 2.468 0.117
矩形针迹 1.987 0.016

图8

各针迹进线方式"

表6

刺绣电极电学性能与针迹的关系"

电极类型 皮肤-电极
界面阻抗/MΩ
信噪比/
dB
基线偏移
幅度/mV
基线稳定
时间/s
缎纹针迹电极 0.357 6.328 0.06 5
径向针迹电极 0.353 4.902 0.08 15
矩形针迹电极 0.708 7.818 0.04 7
3M电极 1.421 3.195 0.13 8
[1] ZHANG J W, ZHANG Y, LI Y Y, et al. Fabrication of a conductive poly (3,4-ethylenedioxythiophene)-coated polyester nonwoven fabric and its application in flexible piezoresistive pressure sensors[J]. ACS Applied Electronic Materials, 2021, 3(7): 3177-3184.
[2] 黄海涛. 氧化石墨烯浸轧-还原法制备导电棉织物[J]. 精细化工, 2020, 37(10): 2132-2137.
HUANG Haitao. Preparation of conductive cotton fabrics by graphene oxide impregnation-reduction method[J]. Fine Chemicals, 2020, 37(10): 2132-2137.
[3] GUO B L, MA P X. Conducting polymers for tissue engineering[J]. Biomacromolecules, 2018, 19(6): 1764-1782.
doi: 10.1021/acs.biomac.8b00276 pmid: 29684268
[4] 许润欣, 肖学良, 王志宇, 等. 织物电极在心电监测服装中的研究进展[J]. 产业用纺织品, 2022, 40(2): 1-6.
XU Runxin, XIAO Xueliang, WANG Zhiyu, et al. Research progress of fabric electrodes in ECG monitoring clothing[J]. Technical Textiles, 2022, 40(2): 1-6.
[5] REINEL C, PEREZ J, ANDRADE-C H. Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG monitoring: a comparative study[J]. Biomedical Engineering Online, 2018, 17(1): 1-38.
[6] 程光伟, 庞淑婷, 刘颖. 浅谈智能纺织品标准化进展[J]. 中国质量与标准导报, 2021(2): 40-43.
CHENG Guangwei, PANG Shuting, LIU Ying. An introduction to the progress of smart textile standardization[J]. China Quality and Standard Guide, 2021(2): 40-43.
[7] 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9.
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fiber materials for smart wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9.
[8] MECNIKA V, HOERR M, KRIEVINS I, et al. Technical embroidery for smart textiles: review[J]. Materials Science Textile and Clothing Technology, 2014, 9: 56-63.
[9] RADAVICIENE S, JUCIENE M, JUCHNEVICIENE Ž, et al. Analysis of shape nonconformity between embroidered element and its digital image[J]. Materials Science, 2014, 20: 84-89.
[10] KIM H, KIM S, LIM D, et al. Development and characterization of embroidery-based textile electrodes for surface EMG detection[J]. Sensors(Basel), 2022, 13: 4746.
[11] GOZDE G B. Design of a wearable pain management system with embroidered TENS electrodes[J]. International Journal of Clothing Science and Technology, 2018, 30(1): 38-48.
[12] HUANG Q, WANG D, HU H, et al. Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors[J]. Advanced Functional Materials, 2020, 30(27): 1910541.
[13] KIM S U, CHOI S O, KIM J Y. Analysis of the necessary mechanical properties of embroiderable conductive yarns for measuring pressure and stretch textile sensor electrodes[J]. Science of Emotion & Sensibility, 2021, 24(2): 49-56.
[14] KANNAIAN T, NEELAVENI R, THILAGAVATHI G, et al. Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals[J]. Journal of Industrial Textile, 2012, 42(3): 303-318.
[15] LUO N, DAI W, LI C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement[J]. Advanced Functional Materials, 2016, 26(8): 1178-1187.
[16] MUHAMMAD M R, GHAFOOR A. Through-wall image enhancement based on singular value decomposition[J]. International Journal of Antennas and Propagation, 2012, 2012(4): 175-195.
[1] 王建萍, 邵熠萌, 杨雅岚, 何苑溪. 针迹类型对表面肌电用刺绣型织物电极性能影响[J]. 纺织学报, 2024, 45(07): 55-62.
[2] 王晓华, 王育合, 张蕾, 王文杰. 缝纫机器人对织物张力与位置的模糊阻抗控制[J]. 纺织学报, 2021, 42(11): 173-178.
[3] 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52.
[4] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
[5] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[6] 袁会锦 张辉 谢光银. 织物结构对纺织结构电极阻抗性能的影响[J]. 纺织学报, 2015, 36(09): 44-49.
[7] 刘雪亭 洪杰 晏雄 张慧萍. 木棉及其混合纤维非织造材料吸声预测模型[J]. 纺织学报, 2015, 36(03): 15-19.
[8] 沈岳 蒋高明 季涛 高强 刘其霞. 活性炭纤维材料声学特性参数研究[J]. 纺织学报, 2014, 35(1): 30-0.
[9] 沈岳 蒋高明 季涛 高强 刘其霞. 活性炭纤维材料吸声性能预测模型[J]. 纺织学报, 2013, 34(4): 27-31.
[10] 李晓峰;王建君;滕召胜. 纺织纤维的交流导电浴盆效应及其应用[J]. 纺织学报, 2005, 26(1): 44-46.
[11] 王建君;李晓峰;王文虎;陈日新. 通用型纤维水分快速测试仪设计[J]. 纺织学报, 2003, 24(06): 18-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!