纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 103-112.doi: 10.13475/j.fzxb.20230805501

• 纺织工程 • 上一篇    下一篇

基于粒子群算法对纬编针织物Johnson-Champoux-Allard模型参数反分析研究

韩炜1, 邢晓梦1,2, 张海宝3, 姜茜1,2, 刘天威1, 卢佳浩3, 闫志强3, 巩继贤1, 吴利伟1,2,3()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.青海省产品质量检验检测院, 青海 西宁 810099
  • 收稿日期:2023-08-25 修回日期:2024-05-24 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 吴利伟(1984—),男,副教授。主要研究方向为功能性纺织品。E-mail: wuliwei@tiangong.edu.cn
  • 作者简介:韩炜(2000—),女,硕士生。主要研究方向为功能性纺织品。
  • 基金资助:
    浙江省纱线材料成形与复合加工技术研究重点实验室开放基金项目(MTC2021-02);天津市高等学校创新团队项目(TD13-5043)

Parametric inverse analysis of Johnson-Champoux-Allard acoustic model for weft knitted fabrics based on particle swarm algorithm

HAN Wei1, XING Xiaomeng1,2, ZHANG Haibao3, JIANG Qian1,2, LIU Tianwei1, LU Jiahao3, YAN Zhiqiang3, GONG Jixian1, WU Liwei1,2,3()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
    3. Qinghai Provincial Institute for Product Quality Inspection and Testing, Xining, Qinghai 810099, China
  • Received:2023-08-25 Revised:2024-05-24 Published:2024-10-15 Online:2024-10-22

摘要:

为快速获取纬编针织物JCA(Johnson-Champoux-Allard)模型参数,建立材料、结构与模型函数关系,实现吸声性能预估,提出迭代次数少、可快速达到全局最优解的粒子群算法对JCA模型进行反分析求解,并以吸声系数实验值和设定值差值平方和的最小值为适应度函数,设置约束,添加学习因子与惯性权重对反分析过程进行限制,多次迭代得到孔隙率、流阻率、曲折因子、黏性特征长度与热特征长度的数值;然后建立JCA模型参数(孔隙率与流阻率)与针织物结构参数(未充满系数)的函数关系,以达到快速获取不同结构针织物JCA模型参数,进而对其吸声情况进行预估的目的;最后,用有限元方法对快速获得的JCA模型参数准确性进行验证。结果表明:基于粒子群算法可精确获得针织物JCA模型的5种参数,迭代次数少于200;针对纬平针组织不同规格,未充满系数可直接换算结构参数(孔隙率与流阻率),结合已知材料参数(曲折因子、黏性特征长度与热特征长度)快速计算出纬平针组织和双反面组织的吸声系数曲线发现,吸声系数曲线拟合度较高,R2分别为0.809和0.852。

关键词: Johnson-Champoux-Allard模型, 粒子群算法, 反分析, 纬编针织物, 吸声性能

Abstract:

Objective Textiles are widely used in the field of acoustic absorption due to their porous texture, lightweight and formability. Due to the viscous inertia and thermal dissipation mechanisms in acoustic absorption of textile materials, the Johnson-Champoux-Allard(JCA) acoustic model is believed suitable for characterization their acoustic property. However, few studies were conducted on the acquisition of acoustic parameters in JCA model and the relations between acoustic parameters and fabric structure remains vague. This paper proposes a method to quickly acquire JCA acoustic model parameters and predict the acoustic absorption of weft-knitted knitted fabric. The particle swarm algorithm was chosen to obtain the JCA acoustic model parameters by inverse analysis. The relations between fabric structure and acoustic parameters were explored, and the sound absorption coefficients of knitted fabrics with different structures were predicted.

Method Particle swarm algorithm was chosen to inversely analyze the acoustic absorption coefficient of weft-knitted fabrics, to obtain parameters of JCA acoustic model, including porosity, flow resistance, tortuosity, viscous characteristic length and thermal characteristic length. By adding inertia weights and learning factors, the inverse analysis process was restricted, thus reducing the number of iterations, avoiding the local optimal solutions, and improving the accuracy of the parameters obtained from the inverse analysis. Based on the results of the inverse analysis, the relations between the structural parameters of the weft-knitted fabric (unfilled coefficient) and the structural parameters of the JCA acoustic model (porosity, flow resistance) were established, and the JCA acoustic model parameters of knitted fabrics with different structures were obtained quickly for acoustic absorption coefficient calculation. The accuracy of the obtained JCA acoustic parameters of fabrics with different structures was verified by the finite element method.

Results The acoustic parameters such as porosity, flow resistance, tortuosity, viscous characteristic length and thermal characteristic length were inversely analyzed by the particle swarm algorithm. After 100 iterations, the iteration speed slowed down and gradually stabilized, reaching the globally optimal solution. The final iteration number was less than 200, with a minimum value of 0.19. Comparison of the numerically calculated sound absorption coefficient with the experimentally measured curves showed that the particle swarm algorithm was able to accurately inverse-analyze the JCA acoustic parameters in the range of 500-5 000 Hz. When the structure was changed, the material parameters, including tortuosity, viscous characteristic length and thermal characteristic length, were empirically obtained from the inverse analysis. Porosity was determined by the unfilled factor according to the global optimal solution. Flow resistance was obtained by fitting the porosity and the flow resistance using the exponential function in the least squares method with known inverse analytical parameters. The coefficient of determination R2 was 0.994 6, indicating the effective fitting. The accuracy of JCA acoustic parameters obtained by above method was verified by finite element method. The sound absorption coefficient curves obtained from the finite element calculations for the weft flat-needle tissues fitted well with the inverse analysis and experiments. The coefficient of determination R2 was 0.809. The sound absorption coefficient curves obtained from finite element calculations of the double inverse organization fitted the inverse analysis and experiments well. The coefficient of determination R2 was 0.852. The work proves the accuracy and reliability of the fabric structure parameters deduced from the JCA acoustic model.

Conclusion The particle swarm method was optimized to inversely analyzing the sound absorption coefficient of weft knitted acoustic-absorption material, and the number of iterations is less than 200, achieving the rapid acquisition of the parameters in the JCA acoustic model. For different textile structures, by directly obtaining the porosity and flow resistance coefficients and combining them with known material parameters, the sound absorption coefficients at different frequencies can be calculated quickly and with less error. This method provides new ideas for the acquisition of acoustic parameters and the prediction of sound absorption performance of acoustic-absorbing material.

Key words: Johnson-Champoux-Allard model, particle swarm algorithm, parametric inverse analysis, weft knitted fabric, sound absorption

中图分类号: 

  • TB332

图1

粒子群算法流程图"

图2

阻抗管吸声测试系统与样品"

图3

吸声测试曲线图"

图4

迭代曲线图"

图5

实验与粒子群算法反分析曲线图"

表1

织物孔隙率和反分析流阻率"

孔隙率/
%
反分析流阻率/
(Pa·s·m-2)
孔隙率/
%
反分析流阻率/
(Pa·s·m-2)
50 48 673 75 35 795
55 44 305 80 33 612
60 42 496 85 29 628
65 39 256 90 27 642
70 37 062 95 24 234

图6

孔隙率与流阻率拟合曲线图"

图7

仿真软件模型结构"

图8

纬平针组织反分析、有限元与实验吸声曲线对比图"

图9

双反面组织反分析、有限元与实验吸声曲线对比图"

[1] WU L W, XING X M, GONG J X, et al. Experimental and finite element analysis on the sound absorption performance of wedge-like knitted composite[J]. Thin-Walled Structures, 2023. DOI:10.1016/j.tws.2022.110289.
[2] THOMPSON R, SMITH R B, KARIM Y B, et al. Noise pollution and human cognition: an updated systematic review and meta-analysis of recent evi-dence[J]. Environment International, 2022, DOI: 10.1016/j.envint.2021.106905.
[3] TAO Y P, REN M S, ZHANG H, et al. Recent progress in acoustic materials and noise control strategies: a review[J]. Applied Materials Today, 2021. DOI: 0.10161/j.apmt.2021.101141.
[4] 周泠卉, 曾佩, 鲁瑶, 等. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(3): 73-78.
ZHOU Linghui, ZENG Pei, LU Yao, et al. Preparation and properties of polyvinyl alcohol nanofibre membrane/ribbed air-layer fabric composite acoustic absorbers[J]. Journal Textile Research, 2023, 44(3): 73-78.
[5] CHAMPOUX Y, ALLARD J. Dynamic tortuosity and bulk modulus in air-saturated porous media[J]. Journal of Applied Physics, 1991, 70(4): 1975-1979.
[6] 李箫, 荆妙蕾, 梁周珍, 等. 具有吸声效果的室内装饰纺织品的设计开发[J]. 毛纺科技, 2022, 50(12): 18-25.
LI Xiao, JING Miaolei, LIANG Zhouzhen, et al. Design and development of upholstery textiles with sound-absorbing effect[J]. Wool Textile Technology, 2022, 50(12): 18-25.
[7] VELAYUTHAM T, MANICKAM R K, SUNDAR-ARAJAN P, et al. A study on the effect of natural regenerated and synthetic non-woven fabric properties on acoustic applications[J]. Journal of Natural Fibers, 2021, 19(2): 6553-6563.
[8] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
doi: 10.13475/j.fzxb.20191205805
SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis of acoustic performance of activated carbon fibre mats with gradient structure[J]. Journal of Textile Research, 2020, 41(10): 29-33.
doi: 10.13475/j.fzxb.20191205805
[9] DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials[J]. The Journal of the Acoustical Society of America, 1970, 48(2): 105-116.
[10] WILSON D K. Relaxation-matched modeling of propagation through porous media, including fractal pore structure[J]. Acoustical Society of America Journal, 1993, 94(2): 1136-1145.
[11] CHAMPOUX Y, ALLARD J. Dynamic tortuosity and bulk modulus in air-saturated porous media[J]. Journal of Applied Physics, 1991, 70(4): 1975-1979.
[12] ALLARD J, CHAMPOUX Y. New empirical equations for sound propagation in rigid frame fibrous mate-rials[J]. Journal of the Acoustical Society of America, 1998, 91(6): 3346-3353.
[13] JOHNSON D L. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176(176): 379-402.
[14] OLNY X, PANNETON R. Acoustical determination of the parameters governing thermal dissipation in porous media[J]. The Journal of the Acoustical Society of America, 2008, 123(2): 814-824.
[15] PANNETON R, OLNY X. Acoustical determination of the parameters governing viscous dissipation in porous media[J]. The Journal of the Acoustical Society of America, 2006, 119(4): 2027-2040.
[16] 郑丽君, 闫勇, 胡永辉, 等. 基于物理参数反演的木质颗粒声学特性研究[J]. 新能源进展, 2021, 9(4): 282-287.
ZHENG Lijun, YAN Yong, HU Yonghui, et al. Research on acoustic properties of wood particles based on inversion of physical parameters[J]. New Energy Progress, 2021, 9(4): 282-287.
[17] 周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车上的应用[J]. 林业工程学报, 2021, 6(3): 113-119.
ZHOU Wenlu, LIN Ping, XU Xiaomei, et al. Acoustic properties of jute fibre mats and their application to automobiles[J]. Journal of Forest Engineering, 2021, 6(3): 113-119.
[18] 吴量, 张文静, 张卜, 等. 多孔聚氨酯吸声材料声学参数逆推方法研究[J]. 软件导刊, 2021, 20(11): 82-86.
WU Liang, ZHANG Wenjing, ZHANG Bu, et al. Inverse extrapolation of acoustic parameters of porous polyurethane acoustic materials[J]. Software Journal, 2021, 20(11): 82-86.
[19] ATALLA Y, PANNETON R. Inverse acoustical characterization of open cell porous media using impedance tube measurements[J]. Optik International Journal for Light & Electron Optics, 2005. DOI: 10.1016/j.ijleo.2015.10.099.
[20] CHANLERT P, TONGYOO S, RORDRAK C. Effects of urea-formaldehyde and polyvinyl acetate adhesive on sound absorption coefficient and sound transmission loss of palmyra palm fruit fiber composites[J]. Applied Acoustics, 2022. DOI: ARTN10898410.1016/j.apacoust.2022.108984.
[21] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I: low-requency range[J]. Journal of the Acoustical Society of America, 2005, 28(2): 179-191.
[22] 李瑞锋. 陶瓷空心球多孔材料吸声结构设计与声学机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015:1-50.
LI Ruifeng. Research on the design of sound-absorbing structure and acoustic mechanism of ceramic hollow sphere porous material[D]. Harbin:Harbin Institute of Technology, 2015:1-50.
[23] 李玉, 温华兵, 赵震宇, 等. 多孔泡沫吸声材料微结构对声学特性的影响分析[J]. 噪声与振动控制, 2022, 42(6): 66-72.
LI Yu, WEN Huabing, ZHAO Zhenyu, et al. Analysis of the effect of microstructure on acoustic properties of porous foam acoustic materials[J]. Noise and Vibration Control, 2022, 42(6): 66-72.
[24] 陈文清. 多孔材料参数反演及其在消声器仿真中的应用[D]. 贵州: 贵州大学, 2018:1-48.
CHEN Wenqing. Parameter inversion of porous materials and its application in muffler simulation[D]. Guizhou: Guizhou University, 2018:1-48.
[25] 温晓丹, 李辉芹, 张楠, 等. 纺织材料降噪性能的检测与评价[J]. 针织工业, 2020(8): 71-75.
WEN Xiaodan, LI Huiqin, ZHANG Nan, et al. Detection and evaluation of noise reduction performance of textile materials[J]. Knitting Industries, 2020(8): 71-75.
[26] 于长帅, 罗忠, 骆海涛, 等. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 226-236.
YU Changshuai, LUO Zhong, LUO Haitao, et al. Advances in acoustic modelling of porous acoustic materials and their characteristic parameter testing methods[J]. Materials Research, 2022, 36(4): 226-236.
[27] 王营, 赵武, 黄丹. 多孔材料声学模型及其应用[J]. 材料导报, 2015, 29(5): 145-149.
WANG Ying, ZHAO Wu, HUANG Dan. Acoustic modelling of porous materials and its applications[J]. Materials Herald, 2015, 29(5): 145-149.
[28] 薛洪波, 伦淑娴. 粒子群算法在多目标优化中的应用综述[J]. 渤海大学学报(自然科学版), 2009, 30(3): 265-269.
XUE Hongbo, LUN Shuxian. A review on the application of particle swarm algorithm in multi-objective optimisation[J]. Journal of Bohai University (Natural Science Edition), 2009, 30(3): 265-269.
[29] FAKHOURI H N, HUDAIB A, SLEIT A. Multivector particle swarm optimization algorithm[J]. Soft Computing, 2020, 24(15): 11695-11713.
doi: 10.1007/s00500-019-04631-x
[30] TRIVEDI V, VARSHNEY P, RAMTEKE M. A simplified multi-objective particleswarm optimization algorithm[J]. Swarm Intelligence, 2020, 14(2): 83-116.
[31] 林焰, 辛登月, 卞璇屹, 等. 改进自适应惯性权重粒子群算法及其在核动力管道布置中的应用[J]. 中国舰船研究, 2023, 18(3): 1-12.
LIN Yan, XIN Dengyue, BIAN Xuanyi, et al. Improvement of adaptive inertia weight particle swarm algorithm and its application in nuclear power pipeline arrangement[J]. China Ship Research, 2023, 18(3): 1-12.
[32] DESHMUKH S, RONGE H, RAMAMOORTHY S. Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.107830.
[33] ALLARD J F, DAIGLE G. Propagation of sound in porous media: modeling sound absorbing materials[J]. The Journal of the Acoustical Society of America, 1994, 95(5):2785-2785.
[34] 张福林, 董玲抒, 李忠盛, 等. 材料声学特性的典型参数测试技术研究进展[J]. 装备环境工程, 2020, 17(8): 131-139.
ZHANG Fulin, DONG Lingyu, LI Zhongsheng, et al. Progress of typical parametric testing techniques for acoustic properties of materials[J]. Equipment Environmental Engineering, 2020, 17(8): 131-139.
[35] KINO N. Further investigations of empirical improvements to the Johnson-Champoux-Allard model[J]. Applied Acoustics, 2015, 96: 153-170.
[36] 李小倩, 刘让同, 耿长军, 等. 织物的孔隙特征与透气透湿性研究[J]. 棉纺织技术, 2019, 47(11): 17-20.
LI Xiaoqian, LIU Rangtong, GENG Changjun, et al. Research on pore characteristics and air and moisture permeability of fabrics[J]. Cotton Textile Technology, 2019, 47(11): 17-20.
[37] 钱娟, 谢婷, 张佩华, 等. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(7): 60-66.
QIAN Juan, XIE Ting, ZHANG Peihua, et al. Thermal and humidity comfort properties of polyethylene knitted fabrics[J]. Journal of Textile Research, 2022, 43(7): 60-66.
[38] 赵超, 杨彩云. 弯纱深度与针织物结构参数及导热系数间的关系[J]. 国际纺织导报, 2015, 43(11): 22-26.
ZHAO Chao, YANG Caiyun. Relationship between yarn bending depth and knitted fabric structural parameters and thermal conductivity[J]. Melliand China, 2015, 43(11): 22-26.
[39] ELTAHAN E A E, SULTAN M, MITO A B. Determination of loop length, tightness factor and porosity of single jersey knitted fabric[J]. Alexandria Engineering Journal, 2016, 55(2): 851-856.
[40] 孙曙光. 纬编针织物工艺参数的计算[J]. 针织工业, 2009(7): 10-12.
SUN Shuguang. Calculation of process parameters of weft knitted fabrics[J]. Knitting Industries, 2009(7): 10-12.
[41] 陈香云, 白小茹. 棉针织物基本性能与热湿舒适性能的关系[J]. 针织工业, 2013(3): 16-19.
CHEN Xiangyun, BAI Xiaoru. Relationship between basic properties and thermal and humidity comfort performance of cotton knitted fabrics[J]. Knitting Industries, 2013(3): 16-19.
[42] MONJOIE F S, GARNIR H P. Fit of a sum of exponential functions to experimental data points[J]. Computer Physics Communications, 1993, 74(1): 1-8.
[43] 冯元珍, 屠小明, 罗建平. MatLab软件在曲线拟合中的应用[J]. 福建电脑, 2007(3): 109,160.
FENG Yuanzhen, TU Xiaoming, LUO Jianping. Application of MatLab software in curve fitting[J]. Fujian Computer, 2007(3): 109,160.
[44] YANG X, YANG F, SHEN X, et al. Development of adjustable parallel helmholtz acoustic metamaterial for broad low-frequency sound absorption band[J]. Materials (Basel), 2022. DOI: ARTN593810.3390/ma15175938.
[1] 胡旭东, 汤炜, 曾志发, 汝欣, 彭来湖, 李建强, 王博平. 基于轻量化卷积神经网络的纬编针织物组织结构分类[J]. 纺织学报, 2024, 45(05): 60-69.
[2] 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92.
[3] 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105.
[4] 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154.
[5] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[6] 吕丽华, 李臻. 废弃玉米秸秆的结构特征及其吸声性能[J]. 纺织学报, 2022, 43(12): 42-47.
[7] 汝欣, 朱婉珍, 史伟民, 彭来湖. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(06): 63-69.
[8] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[9] 胡旭东, 宋炎锋, 汝欣, 彭来湖. 大小头筒状纬编针织物建模及其线圈长度逆向设计[J]. 纺织学报, 2021, 42(04): 80-84.
[10] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[11] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[12] 吕丽华, 刘英杰, 郭静, 王滢, 毕吉红, 叶方. 废弃羽毛的结构特征及其吸声性能[J]. 纺织学报, 2020, 41(01): 32-38.
[13] 韩晓雪, 缪旭红. 氨纶纬编导电针织物纵向电力学性能[J]. 纺织学报, 2019, 40(04): 60-65.
[14] 李长伟 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10): 74-80.
[15] 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!