纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 161-169.doi: 10.13475/j.fzxb.20231200701
张应秀1, 徐丽慧1,2(), 潘虹1,2, 姚程健1,2, 赵红1,2, 窦梅冉1, 沈勇1, 赵诗怡1
ZHANG Yingxiu1, XU Lihui1,2(), PAN Hong1,2, YAO Chengjian1,2, ZHAO Hong1,2, DOU Meiran1, SHEN Yong1, ZHAO Shiyi1
摘要:
针对目前超疏水材料制备原料成本较高的问题,以农林废弃物甘蔗渣为主要原料采用高温炭化活化法制备了多孔碳,并将甘蔗渣基多孔碳(BPC)与低表面能物质聚二甲基硅氧烷(PDMS)结合构筑超疏水功能棉织物。研究了活化温度和活化剂用量对BPC结构和微观形貌的影响,评价了BPC和PDMS质量分数对整理棉织物疏水性能的影响。结果表明:当活化温度为700 ℃,且BPC和活化剂质量比为1∶4时,制备的BPC比表面积达到1 614.25 m2/g,且石墨化程度较高,表面具有粗糙结构且微孔分布最多;PDMS为棉织物提供低表面能的同时,能够将BPC牢固黏结在棉织物表面;当PDMS质量分数为3%,BPC质量分数为0.2%时,所构筑的棉织物超疏水性能较好,静态水滴接触角可达162.2°,实现了超疏水棉织物的优异自清洁、防水抗污性能。
中图分类号:
[1] | 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(8): 109-114. |
LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation[J]. Journal of Textile Research, 2021, 42(8): 109-114. | |
[2] | FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
[3] | ZHANG H, SUN W, WANG L, et al. A mechanically and chemically stable superhydrophobic coating for preventing marine atmospheric corrosion[J]. Surfaces and Interfaces, 2021. DOI: 10.1016/j.surfin.2021.101537. |
[4] | CHEN X T, WANG P, ZHANG D. Designing a superhydrophobic surface for enhanced atmospheric corrosion resistance based on coalescence-induced droplet jumping behavior[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38276-38284. |
[5] | LIU X H, WANG P, ZHANG D, et al. Atmospheric corrosion protection performance and mechanism of superhydrophobic surface based on coalescence-induced droplet self-jumping behavior[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25438-25450. |
[6] | MOON C H, YASMEEN S, PARK K, et al. Icephobic coating through a self-formed superhydrophobic surface using a polymer and microsized particles[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3334-3343. |
[7] |
WANG L, GONG Q H, ZHAN S H, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28(35): 7729-7735.
doi: 10.1002/adma.201602480 |
[8] | SHEN Y Z, WU Z W, TAO J, et al. Spraying preparation of eco-friendly superhydrophobic coatings with ultralow water adhesion for effective anticorrosion and antipollution[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25484-25493. |
[9] |
ZHU H, WU L Z, MENG X, et al. An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions[J]. Nanoscale, 2020, 12(21): 11455-11459.
doi: 10.1039/d0nr01038c pmid: 32324189 |
[10] | 邵明军, 蹇玉兰, 唐唯, 等. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(4): 142-150. |
SHAO Mingjun, JIAN Yulan, TANG Wei, et al. Preparation of durable superhydrophobic coatings on polyester fabric surfaces and its water-oil separation properties[J]. Journal of Textile Research, 2024, 45(4): 142-150. | |
[11] | HAN X, GUO Z. Graphene and its derivative composite materials with special wettability: potential application in oil-water separation[J]. Carbon, 2021, 172: 647-681. |
[12] | QIU L, ZHANG J, GUO Z, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Separation and Purification Technology, 2021. DOI: 10.1016/j.seppur.2021.118994. |
[13] | JAGDHEESH R, HAUSCHWITZ P, MUŽÍK J, et al. Non-fluorinated superhydrophobic Al7075 aerospace alloy by ps laser processing[J]. Applied Surface Science, 2019, 493: 287-293. |
[14] | SOUZA J G S, BERTOLINI M, COSTA R C, et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10118-10129. |
[15] |
KHANMOHAMMADI CHENAB K, SOHRABI B, RAHMANZADEH A. Superhydrophobicity: advanced biological and biomedical applications[J]. Biomaterials Science, 2019, 7(8): 3110-3137.
doi: 10.1039/c9bm00558g pmid: 31215913 |
[16] | FALDE E J, YOHE S T, COLSON Y L, et al. Superhydrophobic materials for biomedical appli-cations[J]. Biomaterials, 2016, 104: 87-103. |
[17] | LI C Z, JIAO Y L, LV X D, et al. In situ reversible tuning from pinned to roll-down superhydrophobic states on a thermal-responsive shape memory polymer by a silver nanowire film[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13464-13472. |
[18] | LV T, CHENG Z J, ZHANG E S, et al. Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small, 2017. DOI: 10.1002/small.201503402. |
[19] | ZHANG W, GAO J, DENG Y, et al. Tunable superhydrophobicity from 3D hierarchically nano-wrinkled micro-pyramidal architectures[J]. Advanced Functional Materials, 2021.putf DOI: 10.1002/adfm.202101068. |
[20] |
KIM D, SASIDHARANPILLAI A, LEE Y, et al. Self-stratified versatile coatings for three-dimensional printed underwater physical sensors applications[J]. Nano Letters, 2021, 21(16): 6820-6827.
doi: 10.1021/acs.nanolett.1c01770 pmid: 34292754 |
[21] | CHENG Y, ZHU T, LI S, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298. |
[22] | SHAO J, SHENG W, WANG C, et al. Solvent-free fabrication of tough self-crosslinkable short-fluorinated copolymer nanocoatings for ultradurable superhydrophobic fabrics[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.128043. |
[23] | REN T T, HE J H. Substrate-versatile approach to robust antireflective and superhydrophobic coatings with excellent self-cleaning property in varied environ-ments[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34367-34376. |
[24] | LUO W J, SUN D W, CHEN S S, et al. Robust microcapsules with durable superhydrophobicity and superoleophilicity for efficient oil-water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57547-57559. |
[25] |
李可婷, 徐丽慧, 潘虹, 等. 基于纤维素纳米纤维的超疏水棉织物制备研究[J]. 功能材料, 2022, 53(7): 7215-7221.
doi: 10.3969/j.issn.1001-9731.2022.07.031 |
LI Keting, XU Lihui, PAN Hong, et al. Study on the preparation of superhydrophobic cotton fabric based on cellulose nanofibers[J]. Functional Materials, 2022, 53(7): 7215-7221. | |
[26] | 朱杰辉, 陈华杰, 姚理荣, 等. 耐久TiO2-PDMS超疏水涤纶织物的制备[J]. 染整技术, 2022, 44(11): 30-33, 41. |
ZHU Jiehui, CHEN Huajie, YAO Lirong, et al. Preparation of durable TiO2-PDMS super hydrophobic polyester fabric[J]. Textile Dyeing and Finishing Journal, 2022, 44(11): 30-33, 41. | |
[27] | WANG J, WU Y, ZHANG D, et al. Preparation of superhydrophobic flexible tubes with water and blood repellency based on template method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. DOI: 10.1016/j.colsurfa.2019.124331. |
[28] | FAN S, WANG Z, LI Z, et al. A versatile and efficient method to fabricate superhydrophobic biomass for removing/collecting oil contaminants[J]. Journal of Materials Research and Technology, 2022, 19: 1600-1613. |
[29] | 左海峰, 刘志高. 甘蔗渣活性炭制备、应用及改性的研究进展[J]. 当代化工, 2023, 52(2): 442-446. |
ZUO Haifeng, LIU Zhigao. Research progress in preparation, application and modification of sugarcane bagasse activated carbon[J]. Contemporary Chemical Industry, 2023, 52(2): 442-446. | |
[30] | 李锦荣, 曾建, 康佩姿, 等. 蔗渣基多孔碳的制备及结构和孔径分布研究[J]. 甘蔗糖业, 2019(2): 44-49. |
LI Jinrong, ZENG Jian, KANG Peizi, et al. Preparation, structure and pore size distribution of bagasse-based porous carbon[J]. Sugarcane and Canesugar, 2019(2): 44-49. | |
[31] | LI R X, YAMASHITA S, KITA H. Investigating the chemical bonding state of graphite powder treated with magnesium(II) phosphate through EELS, TEM, and XPS analysis[J]. Diamond and Related Materials, 2021. DOI: 10.1016/j.diamond.2021.108423. |
[32] | AL-GHOUTI M A, DA'ANA D A. Guidelines for the use and interpretation of adsorption isotherm models: a review[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2020.122383. |
[33] | LIU S, LIAO S H, LIU D, et al. Enhanced triboelectric output of PDMS-based composite film with bi-material filling and surface patterning[J]. Science China Technological Sciences, 2023, 66(10): 2930-2941. |
[34] | SONG G G, YANG J, LIU K X, et al. Cattail fiber-derived hierarchical porous carbon materials for high-performance supercapacitors[J]. Diamond and Related Materials, 2020. DOI: 10.1016/j.diamond.2020.108162. |
[1] | 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160. |
[2] | 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128. |
[3] | 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214. |
[4] | 李成才, 朱登辉, 朱海霖, 郭玉海. 聚四氟乙烯膜的超疏水改性及应用研究进展[J]. 纺织学报, 2024, 45(08): 65-71. |
[5] | 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98. |
[6] | 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129. |
[7] | 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120. |
[8] | 薛宝霞, 杨色, 张春艳, 刘晶, 刘勇, 程伟, 张利, 牛梅. 聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能[J]. 纺织学报, 2024, 45(05): 129-137. |
[9] | 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119. |
[10] | 邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤. 涤纶织物表面耐久超疏水涂层制备及其水油分离性能[J]. 纺织学报, 2024, 45(04): 142-150. |
[11] | 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113. |
[12] | 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20. |
[13] | 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122. |
[14] | 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129. |
[15] | 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150. |
|