纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 191-199.doi: 10.13475/j.fzxb.20230803201

• 机械与设备 • 上一篇    下一篇

花瓣状多尖端静电纺丝喷头的电场模拟及优化

刘健1,2(), 董守骏1, 王程皓1, 刘泳汝2, 潘山山1, 尹兆松1   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 工程教学实习训练中心, 天津 300387
  • 收稿日期:2023-08-13 修回日期:2024-08-14 出版日期:2024-10-15 发布日期:2024-10-22
  • 作者简介:刘健(1985—),男,高级实验师,博士。主要研究方向为CAD/CAM一体化技术、新型纺织机械设计及自动化研究。E-mail:liujian3286@tiangong.edu.cn
  • 基金资助:
    天津市自然科学基金面上项目(22JCYBJC01470)

Electric field simulation and optimization on petal shaped electrospinning nozzle with multiple tips

LIU Jian1,2(), DONG Shoujun1, WANG Chenghao1, LIU Yongru2, PAN Shanshan1, YIN Zhaosong1   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Center of Engineering Practice Training, Tiangong University, Tianjin 300387, China
  • Received:2023-08-13 Revised:2024-08-14 Published:2024-10-15 Online:2024-10-22

摘要:

针对目前多针头静电纺丝易堵塞、针头之间存在边缘效应和无针头静电纺丝供液易挥发、泰勒锥位置不可控等问题,提出一种花瓣状多尖端喷头静电纺丝方法。喷头为半封闭式结构,上半部分为圆柱直管多流道结构,下半部分为花瓣状流道扩张结构,每层的花瓣之间的间距为4 mm,能够在花瓣尖端高电场诱导作用下激发多股射流;利用COMSOL有限元分析软件对下半部分花瓣状流道扩张结构的各个参数电场强度进行模拟,研究喷头下端花瓣数量、花瓣长度和花瓣排布方式对电场均匀性的影响。结果表明:当静电纺丝喷头花瓣数量为4对(8个)、花瓣内层长度为21 mm、外层长度为20 mm、接收距离为200 mm、电压为30 kV时,电场强度平均值为5.441×106 V/m,变异系数(CV)值为5.58%,表明该静电纺丝喷头可激发较高的电场强度且分布均匀;最后采用静电纺丝设备进行纺丝实验,验证了该新型花瓣状多尖端静电纺丝喷头在静电纺丝过程中能够降低边缘效应,减小能耗,射流多且稳定可控,可进行规模化静电纺丝。

关键词: 静电纺丝, 花瓣状喷头, 多尖端, COMSOL软件, 电场模拟

Abstract:

Objective Aiming at the existing problems of multi-needle electrospinning and needleless electrospinning, petal shaped electrospinning nozzle with multiple tips is proposed and used as the emitting electrode. In the electrospinning process, the structure of the emitting electrode has a great influence on the intensity and distribution of the electric field, and has been an important research object. Therefore, it is necessary to design a new electrospinning emitting electrode and optimize the specific parameters of the new emitting electrode.

Method The nozzle was designed as a semi-closed structure. The upper part was divided into a cylindrical straight pipe multi-channel structure, using the method of equal cross-sectional area of each channel, so as to divide the flow evenly while slowing down the flow speed. The lower part was divided into petal shaped flow channel expansion structure. The curve of petal shaped flow channel was designed by Bezier curve, and the end of the petal was the tip to stimulate multiple jets under low energy consumption. COMSOL finite element analysis software was used to simulate the three-dimensional electric field and find the improved methods of increasing the field intensity and reducing end effect. Finally, experiments were carried out validate of the model.

Results The distribution and change of electrospinning electric field of the new type of electrospinning nozzle were simulated. With the increase of the number of petals, the average electric field intensity of the petal tip decreases from 4.446×106 V/m to 3.336×106 V/m due to the fact that the coulomb repulsion interaction between petals became more obvious, suggesting that the number of petals should not be too many. By comparing the electric field intensity and CV value at the tip of different petal lengths, the field was most uniform when there were four pairs of petals. When the length of the outer petal was fixed, the electric field intensity CV value of the petal tip all showed a trend of decreasing first to a certain value and then increasing with the length of the inner petal changing from short to long. Compared with the parameter models with the best electric field CV value in each group, under the condition that the droplet was fully spread and formed normally, the electric field CV value was the best when the inner petal length was 20 mm and the outer petal length was 21 mm, and the value was 6.74%. The capillary effect was used to widen the petals and the distance between each petal was 4 mm, in order to drain the liquid supply and prevent the solution from leaking in the gap between the petals. After the petal dislocation arrangement, the average electric field intensity became 5.441×106 V/m, and the electric field intensity CV value reached 5.58%, indicating that increasing the average distance between petal tips can effectively improve the uniformity of the electric field intensity. Finally, the metal 3D printing nozzle was used for experimental verification, and the fiber film was obtained. Surface morphology and fiber diameter distribution were examined by Hitachi Flex SEM1000 cold field scanning electron microscope, and the average diameter of the fibers was 258.69 nm with CV value being 15.54%.

Conclusion Petal shaped electrospinning nozzle with multiple tips is proposed in this paper. The optimal structural parameters are 4 pairs of petals, 21 mm length of inner petals, and 20 mm length of outer petals, together with the dislocation arrangement of inner and outer petals. The finite element analysis shows that the new nozzle can effectively combine the advantages of needle and needle-free electrospinning, produce high field intensity and uniform distribution of electrostatic field and can effectively avoid solution volatilization and environmental pollution. The experimental results show that each tip of the petal-like multi-tip electrospinning nozzle can produce a stable and continuous jet, and the total spinning area is large, and the generated fibers are fine and uniform.

Key words: electrospinning, petal-shaped nozzle, multi-tip, COMSOL, electric field simulation

中图分类号: 

  • TS174.8

图1

花瓣状多尖端静电纺丝喷头模型"

图2

圆柱直管多流道分配示意图"

图3

花瓣单侧曲线示意图"

图4

花瓣状多尖端喷头静电纺丝体系模型"

图5

不同花瓣对数对电场的影响"

图6

不同花瓣长度的静电纺丝喷头电场强度云图与CV值(Lout为10、20 mm)"

图7

不同花瓣长度的静电纺丝喷头电场强度云图与CV值(Lout为30 mm)"

表1

不同内外花瓣长度的静电纺丝喷头电场强度平均值"

Lout=10 mm Lout=20 mm Lout=30 mm
Lin
长度
电场强度
平均值
Lin
长度
电场强度
平均值
Lin
长度
电场强度
平均值
6.0 5.892 16.0 3.244 26.0 2.951
7.0 5.796 17.0 3.382 27.0 3.094
8.0 6.364 18.0 3.535 28.0 3.020
9.0 5.723 19.0 3.589 29.0 3.406
10.6 6.249 20.6 4.198 30.6 3.638
11.0 6.666 21.0 3.763 31.0 3.643
12.0 7.777 22.0 3.540 32.0 3.344
13.0 8.393 23.0 3.474 33.0 3.405
14.0 7.634 24.0 3.765 34.0 3.293

图8

静电纺丝喷头花瓣中缝处理"

图9

静电纺丝喷头花瓣错位排布的电场云图及尖端电场强度"

图10

金属材质花瓣状多尖端静电纺丝喷头"

图11

花瓣状多尖端喷头静电纺丝实验"

图12

静电纺纤维膜"

图13

纳米纤维膜的扫描电镜照片与直径分布图"

[1] LEE J, MOON S, LAHANN J, et al. Recent progress in preparing nonwoven nanofibers via needleless electrospinning[J]. Macromolecular Materials and Engineering, 2023. DOI: 10.1002/mame.202300057.
[2] SHI S, SI Y, HAN Y, et al. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications[J]. Advanced Materials, 2022, 34(17): 1-31.
[3] 王艳芝. 静电纺丝技术发展简史及应用[J]. 合成纤维工业, 2018, 41(4): 52-57.
WANG Yanzhi. Development history and application of electrospinning technology[J]. Synthetic Fiber Industry, 2018, 41(4): 52-57.
[4] 刘辰昊, 卞烨, 张波. 静电纺丝纳米纤维复合材料及其在环境领域的应用[J]. 现代化工, 2023, 43(7): 63-67.
LIU Chenhao, BIAN Ye, ZHANG Bo. Electrospinning nanofiber composites and their application in environmental field[J]. Modern Chemical Industry, 2023, 43(7): 63-67.
[5] 刘鹏. 静电纺丝在生物医用材料领域的应用综述[J]. 山东纺织经济, 2020(4): 26-28, 39.
LIU Peng. Application of electrospinning in biomedical materials[J]. Shandong Textile Economy, 2020(4): 26-28, 39.
[6] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[7] 谢概, 宋庆松, 邓德鹏, 等. 无针头静电纺丝研究进展[J]. 工程塑料应用, 2014, 6(42): 117-122.
XIE Gai, SONG Qingsong, DENG Depeng, et al. Research progress of electrospinning without needle[J]. Engineering Plastics Application, 2014, 6(42): 117-122.
[8] 卓丽云, 朱自明, 郑高峰. 多射流静电纺丝稳定性的影响分析[J]. 工程塑料应用, 2020, 48(10): 59-64.
ZHUO Liyun, ZHU Ziming, ZHENG Gaofeng. Influence analysis of multi-jet electrospinning stabi-lity[J]. Application of Engineering Plastics, 2020, 48(10): 59-64.
[9] TOMASZEWSKI W, SZADKOWSKI M. Investigation of electrospinning with the use of a multi-jet electrospinning head[J]. Fibres and Textiles in Eastern Europe, 2005, 13(4): 22-26.
[10] 张艳萍, 张莉彦, 马小路, 等. 无针静电纺丝技术工业化进展[J]. 塑料, 2017, 46(2): 1-4.
ZHANG Yanping, ZHANG Liyan, MA Xiaolu, et al. Progress in industrialization of needle-free electrospinning technology[J]. Plastics, 2017, 46(2): 1-4.
[11] LIU Z, ZHAO J, ZHOU L, et al. Recent progress of the needleless electrospinning for high throughput of nanofibers[J]. Recent Patents on Nanotechnology, 2019, 13(3): 164-170.
doi: 10.2174/1872210513666190426151150 pmid: 32026765
[12] 付鹏飞. 贝塞尔曲线在汽车设计中的运用[J]. 企业技术发, 2012, 31(26): 46-47, 91.
FU Pengfei. Application of Bezier curve in automobile design[J]. Enterprise Technology Development, 2012, 31(26): 46-47,91.
[13] 刘延波, 周聪, 郝铭, 等. 二次分形螺线纺丝头设计及其对场强的影响[J]. 现代纺织技术, 2023, 31(3): 12-20.
LIU Yanbo, ZHOU Cong, HAO Ming, et al. Design of secondary fractal spiral spinning head and its influence on field intensity[J]. Advanced Textile Technology, 2023, 31(3): 12-20.
[14] LIU J, LIU Y, BUKHARI S H, et al. Field intensity simulation and optimization of a solid needle electrospinning device[J]. Chemical Journal of Chinese Universities, 2017, 38(6): 1011-1017.
[15] BAUTISTA E V, BARILLAS J L M, DUTRA Jr T V, et al. Capillary, viscous and gravity forces in gas-assisted gravity drainage[J]. Journal of Petroleum Science and Engineering, 2014, 122: 754-760.
[16] 李艳娟, 孙立新, 杨静芬, 等. 蒸压加气混凝土毛细吸水试验中尺寸效应的影响研究[J]. 建筑节能, 2020, 48(9): 71-73, 138.
LI Yanjuan, SUN Lixin, YANG Jingfen, et al. Study on the influence of size effect on capillary water absorption test of autoclaved aerated concrete[J]. Building Energy Conservation, 2020, 48(9): 71-73, 138.
[1] 张佃平, 王昊, 林文峰, 王振秋. 多喷头纺丝装置的仿真与设计[J]. 纺织学报, 2024, 45(10): 200-207.
[2] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[3] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[4] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[5] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[6] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[7] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[8] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[9] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[10] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[11] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[12] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[13] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[14] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[15] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!