纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 200-207.doi: 10.13475/j.fzxb.20230707101

• 机械与设备 • 上一篇    下一篇

多喷头纺丝装置的仿真与设计

张佃平(), 王昊, 林文峰, 王振秋   

  1. 宁夏大学 机械工程学院, 宁夏 银川 750021
  • 收稿日期:2023-07-27 修回日期:2024-06-25 出版日期:2024-10-15 发布日期:2024-10-22
  • 作者简介:张佃平(1981—),男,副教授,博士。主要研究方向为专用设备设计和功能材料研发。E-mail:zhangdp@nxu.edu.cn
  • 基金资助:
    银川市科技创新项目(2023NYHZC01)

Simulation and design of multi-nozzle spinning device

ZHANG Dianping(), WANG Hao, LIN Wenfeng, WANG Zhenqiu   

  1. School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
  • Received:2023-07-27 Revised:2024-06-25 Published:2024-10-15 Online:2024-10-22

摘要:

针对静电纺丝多喷头间电场强度分布不均匀所导致的纺丝液射流运动轨迹不稳定、纺丝纤维分布较为分散等边缘效应问题,采用COMSOL Multiphysics软件,通过深入研究多喷头静电纺丝的纺丝电压、喷头间的横向间距和纵向间距对多喷头电场强度分布均匀性的影响程度,给出削弱多喷头边缘效应的喷头最优空间位置关系。结果表明:在三喷头仿真实验中,增大喷头间的横向间距,3个喷头的电场强度随着纵向间距的减小而逐渐趋于一致;当横向间距为5.0 cm、纵向间距为0.5 cm时,边缘效应能够得到有效缓解,且该间距更有利于多喷头的结构设计;五喷头、九喷头静电纺丝装置在保持横向间距为5.0 cm不变的情况下,纵向间距为0.5 cm时的电场强度分布相对于零点位置更加均匀,且九喷头的效果最好。通过实验验证,九喷头结构具有纺丝面积大、效率高和纺丝过程稳定等优点,研究结果可为纺丝装置的多喷头结构研究与设计提供借鉴。

关键词: 静电纺丝, 纳米纤维, 多喷头, 纺丝装置仿真, 电场分布, 多喷头纺丝技术

Abstract:

Objective Nanofibres have been widely used in many scientific fields due to their excellent characteristics such as large specific surface area and high porosity. Currenly, the electrospinning efficiency of the traditional electrospinning equipment is low, failing to meet the requirement for practical applications. Researchers worked to improve the electrospinning efficiency by increasing the number of nozzles, but there is an "edge effect" problem in multi-nozzle electrospinning. The "edge effect" is generally manifested in the uneven distribution of electric field strength at the nozzle, which leads to electrospinning instability. This study aims to solve the "edge effect" problem through electric field intensity simulation analysis and to design a corresponding multi-nozzle device.

Method Three nozzles were used as the basis for simulation. By changing longitudinal spacing and transverse spacing of nozzles, COMSOL Multiphysics software was employed to analyze the change of the electric field intensity. Following the three-nozzle space electric field intensity simulation analysis, five-nozzle and nine-nozzle simulation analysis of electric field intensity distribution were carried out, the results of which were used for designing multi-nozzle devices.

Results In the three nozzles space electric field intensity simulation, the electric field intensity values of the three nozzles appeared to be the same when increasing transverse spacing, where the transverse spacing was kept to 9.45 cm. However, excessive transverse spacing was found not conducive to the structural design of the multi-nozzle device. The effect of increasing the voltage of the middle nozzle on the electric field intensity was much smaller than the effect of changing the transverse spacing on the electric field intensity. Among them, when the transverse spacing was 5.0 cm, the electric field intensity value was only 2 170 kV/m, which is not conducive to spinning experiments, and the additional high-voltage power required for smaller transverse spacing would cause resource waste in the simulation experiment of changing the transverse and longitudinal spacing. In order to make the three nozzles have the same electric field intensity, the longitudinal spacing of the nozzles was decreased with increased transverse spacing, at 5 cm/0.5 cm (transverse/longitudinal spacing), when the same electric field intensity was 4 394 kV/m. Designing a multi-nozzle structure based on 5 cm/0.5 cm (transverse/longitudinal spacing) not only effectively alleviated the "edge effect" problem, but also facilitated the structural design of multi-nozzle. With 5 cm/0.5 cm (transverse/longitudinal spacing) as the basic parameter setting, under the same conditions, the electric field intensity distribution of the nine nozzles was more uniform than that of the five nozzles. A multi-nozzle device was designed based on simulation results. In the electrospinning verification of the multi-nozzle electrospinning device, the nine nozzles device not only stabilized the electrospinning process, but also improved the electrospinning efficiency by 422.3% compared to the single nozzle device within the same electrospinning time.

Conclusion By changing the relative position of multi-nozzle in space, it can effectively solve the "edge effect" problem in multi-nozzle scenario, make the electric field intensity distribution at the nozzles more uniform, and increase the electrospinning efficiency, and also ensure the stability of the electrospinning process. The method is mainly to adjust the transverse and longitudinal spacing of the nozzles to reduce the influence of the nozzle voltages on each other, so as to make the jet smoother in the deposition process. These results show that changing the relative position of the nozzle space can effectively solve some problems in the multi-nozzle electrospinning process, and also provide some help for the improvement of the multi-nozzle spinning device in the future.

Key words: electrospinning, nanofiber, multi-nozzle, simulation on spinning apparatus, electric field intensity distribution, multi-nozzle spinning technology

中图分类号: 

  • TB383

图1

施加电压下3种喷头的电荷分布情况"

图2

三喷头处电荷所受库仑力示意图"

图3

三喷头分布图"

图4

不同横向间距下喷头电场强度图"

图5

中间喷头不同电压及横向间距下三喷头电场强度分布图"

表1

不同间距下的仿真数据"

横向间距/cm 中间喷头电压/kV 电场强度/(kV·m-1)
1.0 15.3 4 500
2.0 15.3 4 800
3.0 15.1 5 000
4.0 15.5 5 100
5.0 15.0 2 170

图6

在不同横向间距下改变纵向间距时电场强度曲线图"

图7

五喷头分布图"

图8

五喷头电场强度分布图"

图9

九喷头分布图"

图10

九喷头电场强度分布图"

图11

多喷头纺丝装置图 注:1—螺母;2—上壳体;3—铜片;4—鲁尔接头;5—喷头;6—下壳体;7—紧定螺钉。"

图12

不同数量喷头的纺丝图"

[1] ZHANG X, XU Y, VALENZUELA C, et al. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence[J]. Light: Science & Applications, 2022. DOI: 10.1038/s41377-022-00913-6.
[2] KUMAR S, WANG Z, ZHANG W, et al. Optically active nanomaterials and its biosensing applications: a review[J]. Biosensors, 2023. DOI: 10.3390/bios13010085.
[3] XIA C, JIN X, GARALLEH H A, et al. Optimistic and possible contribution of nanomaterial on biomedical applications: a review[J]. Environmental Research, 2023. DOI: 10.1016/j.envres.2022.114921.
[4] LV D, ZHU M, JIANG Z, et al. Green electrospun nanofibers and their application in air filtration[J]. Macromolecular Materials and Engineering, 2018. DOI: 10.1002/mame.201800336.
[5] ZHANG Y, ZHANG X, SILVA S R P, et al. Lithium-sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density[J]. Advanced Science, 2022. DOI: 10.1002/advs.202103879.
[6] GÓRA A, SAHAY R, THAVASI V, et al. Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation[J]. Polymer Reviews, 2011, 51(3): 265-287.
[7] YANG Y, JIA Z, LIU J, et al. Effect of electric field distribution uniformity on electrospinning[J]. Journal of Applied Physics, 2008. DOI: 10.1063/1.2924439.
[8] WEN X, XIONG J, LEI S, et al. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications[J]. Advanced Fiber Materials, 2022, 4(2): 145-161.
[9] AHMADIAN A, SHAFIEE A, ALIAHMAD N, et al. Overview of nano-fiber mats fabrication via electrospinning and morphology analysis[J]. Textiles, 2021, 1(2): 206-226.
[10] HAIDER A, HAIDER S, KANG I K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology[J]. Arabian Journal of Chemistry, 2018, 11(8): 1165-1188.
[11] YOON J, YANG H S, LEE B S, et al. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201704765.
[12] VARESANO A, CARLETTO R A, MAZZUCHETTI G. Experimental investigations on the multi-jet electrospinning process[J]. Journal of Materials Processing Technology, 2009, 209(11): 5178-5185.
[13] THERON S A, YARIN A L, ZUSSMAN E, et al. Multiple jets in electrospinning: experiment and modeling[J]. Polymer, 2005, 46(9): 2889-2899.
[14] WANG X, LIN T, WANG X. Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring[J]. Fibers and Polymers, 2014, 15(5): 961-965.
[15] 卓丽云, 朱自明, 郑高峰. 多射流静电纺丝稳定性的影响分析[J]. 工程塑料应用, 2020, 48(10): 59-64.
ZHUO Liyun, ZHU Ziming, ZHENG Gaofeng. Analysis on stability of multi-jet electrostatic spinning[J]. Engineering Plastics Application, 2020, 48(10): 59-64.
[1] 刘健, 董守骏, 王程皓, 刘泳汝, 潘山山, 尹兆松. 花瓣状多尖端静电纺丝喷头的电场模拟及优化[J]. 纺织学报, 2024, 45(10): 191-199.
[2] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[3] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[4] 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251.
[5] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[6] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[7] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[8] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[9] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[10] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[11] 何满堂, 郭俊泽, 王黎明, 覃小红. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(08): 142-149.
[12] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[13] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[14] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[15] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!