纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 208-215.doi: 10.13475/j.fzxb.20231105501

• 机械与设备 • 上一篇    下一篇

便携式织物图像颜色测量系统开发

庄冰冰, 向军, 张宁, 潘如如(), 张卜文   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-11-27 修回日期:2024-06-19 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 潘如如(1982—),男,教授,博士。主要研究方向为纺织品图像分析检测技术、纺织智能制造。E-mail:prrsw@163.com
  • 作者简介:庄冰冰(2000—),女,硕士生。主要研究方向为织物颜色测量方法。
  • 基金资助:
    国家自然科学基金项目(61976105);中国纺织工业联合会应用基础研究项目(J202006);研究生科研与实践创新项目(KYCX-23-ZD01);研究生科研与实践创新项目(KYCX-23-ZD03)

Research and development of portable fabric image color measurement system

ZHUANG Bingbing, XIANG Jun, ZHANG Ning, PAN Ruru(), ZHANG Bowen   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-11-27 Revised:2024-06-19 Published:2024-10-15 Online:2024-10-22

摘要:

针对现行颜色测量系统体积较大、价格昂贵和适用性较差等问题,开发了一款便携式织物图像颜色测量系统。该系统包括可折叠拆卸的封闭式图像采集装置和颜色测量算法。使用能兼容多种拍摄设备的图像采集装置采集标准色卡图像和织物图像,在此基础上,结合多项式回归算法和K-Means聚类算法,设计了一种分类颜色测量方法,用于对织物图像的颜色测量。该方法根据织物不同颜色类别应用不同的多项式回归模型,以提高测量的准确性和可靠性。经过实验验证,该系统在机织物图像及不同品牌智能手机拍摄的纯色和多色织物的颜色测量中均显示出良好的应用效果,测量结果的平均色差与Digieye颜色测量系统保持了较好的一致性,证明了本系统在织物颜色测量方面的有效性。

关键词: 纺织面料, 织物图像, 颜色测量, 色差, 聚类算法

Abstract:

Objective In the textile industry, fabric color is a critical factor affecting the final product's appearance and quality. With the dynamic shifts in fashion trends and increasing diversity in consumer demands, the production pace in the textile sector has accelerated, necessitating more diverse and rapidly updated color options. Consequently, developing a convenient and efficient textile color measurement system is vital to meet the industry's evolving demands. This system is designed for scenarios such as offline trading where traditional measurement system may not be feasible, thereby facilitating accurate color assessment and transactional decisions in the textile domain.

Method In this research, a portable fabric image color measurement system compatible with multiple devices was developed, which comprises a foldable, enclosed image acquisition device and an algorithm for color measurement. The design of image acquisition device incorporated a detachable and collapsible structure, enhancing the system's portability. To ensure accurate color measurement, the study integrated polynomial regression and K-Means clustering algorithms to devise a categorical approach to color measurement. This method involved applying different polynomial regression models based on the specific color categories of the fabrics, thereby facilitating precise color measurement.

Results The process began with capturing images of Datacolor SpyderCheckr24 color swatches using a smartphone. Subsequently, these images underwent processing through a classification correction algorithm developed in this study. The analysis of color differences after correction indicated that the performance of this system closely matched that of the Digieye color measurement system, suggesting that smartphone-captured images, when processed through this system, can approximate actual colors. Furthermore, the system was applied to a set of 25 solid-color woven fabrics. The color measurements obtained from these samples were then compared with the results from the Digieye system. The comparisons revealed a significant degree of consistency, as measured by the ΔE1976 metric and ΔE00 metric, demonstrating the system's efficacy in fabric color measurement,, demonstrating the system’s efficacy in fabric color measurement. To explore the generalization capabilities of the system across various devices, same-color measurement exercises were conducted using smartphones from different brands, including multi-color fabric samples and the aforementioned solid-color woven fabrics. The color differences between the measurements taken from these different devices and those obtained from the Datacolor650 were analyzed. The results of this analysis consistently showed the adaptability of the system in processing images from different smartphone brands, and its ability to provide accurate and reliable color measurements, were irrespective of the device used.

Conclusion The system was applied for color measurement of woven fabric images, including those captured by smartphones from various brands, encompassing both solid and multi-colored fabrics. The results demonstrated that the color measurements from this system align closely with the Digieye system. For model training in this study, Datacolor Spyde Checkr24 color swatches were used. Compared to the dedicated calibrated color cards of the Digieye system, the number of training samples in this study was limited, impacting the measurement accuracy. Future research will focus on expanding the training sample pool and enhancing the color measurement methodology to increase accuracy and extend the practical application of the system in color-related fields.

Key words: textile fabric, polynomial regression, color measurement, smartphone, clustering algorithm

中图分类号: 

  • TS941.26

图1

图像采集系统示意图"

图2

颜色测量流程图"

图3

Datacolor SpyderCheckr24色板示意图"

表1

不同模型校正后的平均色差"

模型编号 ΔE1976 ΔE00
1 6.61 4.20
2 6.25 3.91
3 5.48 3.28
4 4.95 2.98
5 4.80 2.91
6 4.11 2.54

表2

不同色块校正后的色差"

序号 模型4 模型5 模型6
ΔE1976 ΔE00 ΔE1976 ΔE00 ΔE1976 ΔE00
1 7.33 4.50 9.10 5.67 4.63 3.31
2 1.03 1.46 2.03 1.88 0.63 0.90
3 5.43 4.51 4.71 4.08 4.35 3.92
4 3.84 3.90 2.23 2.51 3.26 3.50
5 2.68 2.35 1.69 1.51 1.63 1.47
6 3.23 2.75 8.19 5.97 2.93 2.55
7 7.75 4.76 6.32 2.87 6.41 4.10
8 6.54 5.29 1.77 0.57 3.80 2.94
9 6.56 3.19 3.20 1.09 7.01 3.63
10 3.83 1.19 3.19 1.41 2.42 1.45
11 4.54 2.07 5.46 2.60 5.02 2.54
12 3.89 1.70 5.20 2.96 2.81 1.54
13 5.57 2.28 6.78 2.25 5.40 1.56
14 2.21 0.73 0.74 0.50 2.20 1.68
15 7.04 2.28 6.58 2.52 5.72 1.82
16 8.47 4.52 6.38 3.25 6.00 3.16
17 5.08 2.49 5.76 3.15 5.80 3.18
18 6.90 3.28 7.32 3.64 7.73 3.85
19 2.70 1.72 3.54 2.63 1.67 0.97
20 1.54 1.01 3.83 3.55 3.45 3.19
21 5.41 3.14 8.17 5.33 5.57 3.04
22 2.05 1.71 2.35 2.21 2.03 1.50
23 9.07 6.36 5.04 3.53 3.47 2.37
24 6.02 4.33 5.53 4.20 4.62 2.83

图4

聚类结果示意图"

图5

色卡校正后图像与Digieye系统拍摄图像对比"

表3

不同色块尺寸测量结果"

色块尺寸/
像素
原始RGB信号CV值/%
R G B
100×100 0.15 0.12 0.16
200×200 0.14 0.11 0.14
250×250 0.14 0.12 0.12
平均值 0.14 0.12 0.14

图6

机织物校正后图片和Digieye拍摄的织物照片"

表4

机织物颜色测量结果"


Datacolor 650 Digieye 本文算法
L a b L a b L a b
1 73.80 38.63 -6.73 75.38 37.18 -4.45 72.16 36.42 -8.40
2 56.87 45.62 24.86 58.82 45.47 24.69 56.46 45.32 20.68
3 50.69 65.04 1.08 54.99 59.32 -1.37 49.95 62.59 3.16
4 37.70 35.44 -39.15 37.91 21.64 -40.02 38.22 35.34 -44.33
5 32.34 15.02 9.12 34.07 14.27 8.69 34.43 13.86 9.27
6 20.70 0.58 -0.83 23.81 2.30 -0.67 21.65 0.34 -2.14

图7

不同品牌手机拍摄同一机织物图像校正后结果 注:样布a、d为iPhone12手机拍摄的织物图片和经本研究算法校正后的图片;样布b、e为OPPOrmx3366手机拍摄的织物图片和经本研究算法校正后的图片;样布c、f为RedmiK40手机拍摄的织物图片和经本研究算法校正后的图片。"

表5

不同品牌手机对同一织物颜色测量结果"

样布序号 L a b
样布a 56.46 45.32 20.68
样布b 57.15 44.48 21.27
样布c 57.81 44.73 22.05
样布d 38.22 36.34 -40.43
样布e 38.17 38.17 -39.92
样布f 38.50 37.50 -39.37

表6

不同品牌智能手机拍摄机织物颜色测量的色差对比"

设备名称 ΔE1976 ΔE00
Digieye 4.43 2.67
iPhone12 4.41 2.66
OPPOrmx336 3.95 2.39
RedmiK40 3.93 2.38

图8

校正前后多色织物及Digieye拍摄织物图片"

[1] 金肖克, 李启正, 张声诚, 等. 织物颜色测量方法的分类与发展[J]. 纺织导报, 2012(9): 103-105.
JIN Xiaoke, LI Qizheng, ZHANG Shengcheng, et al. Classification and development of the fabric color measurement methods[J]. China Textile Leader, 2012(9):103-105.
[2] 张戈, 周建, 王蕾. 用分光光度计法测量纤维颜色的影响因素[J]. 纺织学报, 2020, 41(4):72-77.
ZHANG Ge, ZHOU Jian, WANG Lei, et al. Influencing factors for fiber color measurement by spectrophotometer[J]. Journal of Textile Research, 2020, 41(4):72-77.
[3] 李启正, 金肖克, 张声诚, 等. 数码测色法在织物颜色评价中的应用[J]. 印染, 2014, 40(17):17-22.
LI Qizheng, JIN Xiaoke, ZHANG Shengcheng, et al. Application of digital color measuring methods to color evaluation of textiles[J]. China Dyeing & Finishing, 2014, 40(17):17-22.
[4] 王丽华. DigiEye数码测色系统在纺织品色牢度评级中的应用[J]. 染整技术, 2017, 39(9):54-56,60.
WANG Lihua. Application of DigiEye digital color measuring system in textiles color fastness evaluation[J]. Textile Dyeing and Finishing Journal, 2017, 39(9):54-56,60.
[5] HENG C, SHEN H, WANG F, et al. Calibrated color measurement of cashmere using a novel computer vision system[J]. Measurement, 2021, 185:109990-109991.
[6] 辛春莉, 王子玉, 周建, 等. 数码相机在染色织物色差测量中的应用[J]. 纺织学报, 2018, 39(8):77-82.
XIN Chunli, WANG Ziyu, ZHOU Jian, et al. Color difference measurement of dyed fabrics using digital camera[J]. Journal of Textile Research, 2018, 39(8):77-82.
[7] GOÑI S M, SALVADORI V O. Color measurement: comparison of colorimeter vs. computer vision system[J]. Journal of Food Measurement and Characterization, 2017, 11:538-547.
[8] 刘关松, 吕嘉雯, 徐建国, 等. 监督颜色校正方法研究[J]. 计算机学报, 2003(4):502-506.
LIU Guansong, LV Jiawen, XU Jianguo, et al. The Study of Supervised Color Correction[J]. Chinese Journal of Computers, 2003(4):502-506.
[9] 赵晓梅, 张正平, 余颖聪, 等. 基于CS-BP神经网络的舌诊图像颜色校正算法[J]. 贵州大学学报(自然科学版), 2019, 36(5):82-87.
ZHAO Xiaomei, ZHANG Zhengping, YU Yingcong, et al. Color correction algorithm for tongue diagnosis images based on CS-BP neural network[J]. Journal of Guizhou University(Natural Sciences), 2019, 36(5): 82-87.
[10] 马玫娟, 蔡轶珩, 张新峰, 等. 基于自适应局部非线性回归的颜色校正算法[J]. 计算机工程与应用, 2010, 46(13):164-167.
MA Meijuan, CAI Yiheng, ZHANG Xinfeng, et al. Color correction method based on self-adaptive local nonlinear regression.[J]. Computer Engineering and Applications, 2010, 46(13):164-167.
doi: 10.3778/j.issn.1002-8331.2010.13.049
[11] 郭越, 高昆, 朱钧, 等. 一种基于LASSO回归模型的彩色相机颜色校正方法[J]. 影像科学与光化学, 2017, 35(2):153-161.
doi: 10.7517/j.issn.1674-0475.2017.02.153
GUO Yue, GAO Kun, ZHU Jun, et al. A color correction method for color camera based on LASSO regression model[J]. Imaging Science and Photochemistry, 2017, 35(2):153-161.
doi: 10.7517/j.issn.1674-0475.2017.02.153
[12] 宋慧慧. 多光谱颜色测量技术在印刷生产中的应用与发展[J]. 印刷技术, 2013(20):78-79.
SONG Huihui. Application and development of multispectral color measurement technology in print production[J]. Printing Technology, 2013(20):78-79.
[13] 王森, 刘琛, 邢帅杰. K-means聚类算法研究综述[J]. 华东交通大学学报, 2022, 39(5):119-126.
WANG Sen, LIU Cheng, XING Shuaijie, et al. Reviewon K-means clustering algorithm[J]. Journal of EastChina Jiaotong University, 2022, 39(5):119-126.
[14] 唐颖, 周炜, 张欢欢. 纺织品中的几种色差评价方法[J]. 纺织检测与标准, 2022, 8(6):5-8.
TANG Ying, ZHOU Wei, ZHANG Huanhuan. Several color difference evaluation methods for textiles[J]. Textile Testing and Standard, 2022, 8(6):5-8.
[1] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[2] 裘柯槟, 陈维国, 张志强, 黄为忠. 基于二维高斯核密度估计的有色纤维颜色特征提取方法[J]. 纺织学报, 2024, 45(05): 85-93.
[3] 杨柳, 李羽佳, 俞琰, 马磊, 张瑞云. 基于纽介堡方程的色纺织物颜色预测[J]. 纺织学报, 2024, 45(01): 83-89.
[4] 张爱丹, 郭珍妮. 异形网点结构提花织物设计及其灰度仿真特性[J]. 纺织学报, 2023, 44(09): 68-74.
[5] 张爱丹, 郭珍妮, 叶婧婧. 多色网点结构提花织物设计与色彩仿真评价[J]. 纺织学报, 2023, 44(07): 57-63.
[6] 聂梓萌, 杜劲松, 朱建龙, 岳春明, 葛旭光. 基于仿真区域性数据的服装团体定制归号机制[J]. 纺织学报, 2023, 44(05): 191-197.
[7] 程璐, 马崇启, 周惠敏, 王颖, 夏鑫. 基于视觉特性的色纺纱全光谱配色算法优化[J]. 纺织学报, 2022, 43(10): 38-44.
[8] 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108.
[9] 张爱丹, 郭珍妮, 汪阳子. 模块组合全显色结构提花织物设计与仿色优化比较[J]. 纺织学报, 2021, 42(10): 67-74.
[10] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[11] 任艳博, 蒋超, 王教庆, 俞琳, 王园园. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(05): 103-108.
[12] 裘柯槟, 陈维国, 周华. 用光谱成像技术与分光光度法测量织物颜色的比较分析[J]. 纺织学报, 2020, 41(11): 73-80.
[13] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[14] 裘柯槟, 陈维国, 周华, 应双双. 成像技术在纺织品颜色测量中的应用进展[J]. 纺织学报, 2020, 41(09): 155-161.
[15] 应双双, 裘柯槟, 郭宇飞, 周赳, 周华. 纺织品色彩管理色表测量数据的误差优化[J]. 纺织学报, 2020, 41(08): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!