纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 216-223.doi: 10.13475/j.fzxb.20230704101

• 机械与设备 • 上一篇    下一篇

热风黏合烘箱有限元仿真分析与结构优化

吕汉明(), 梁金辉, 马崇启, 端木德庆   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2023-07-18 修回日期:2024-05-02 出版日期:2024-10-15 发布日期:2024-10-22
  • 作者简介:吕汉明(1970—),男,教授,博士。主要研究方向为数字化纺织。E-mail:lvhanming@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金项目(51003075);国家自然科学基金项目(51403152)

Simulation analysis and structural optimization of hot-air bonding oven based on finite element method

LÜ Hanming(), LIANG Jinhui, MA Chongqi, DUANMU Deqing   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2023-07-18 Revised:2024-05-02 Published:2024-10-15 Online:2024-10-22

摘要:

为研究和提升热风黏合烘箱内部流场和温度场的均匀性,采用有限元分析方法对烘箱内部流场进行了仿真分析与优化。使用SolidWorks建立了烘箱流体域三维模型,根据烘箱工作时条件设定仿真计算的边界条件,通过实验测量得到纤维网的流阻数值,设定流阻相同的多孔介质模型代替纤维网实际结构,利用Fluent软件对烘箱内部流体域模型进行仿真计算,通过实验验证了仿真建模及计算的正确性。仿真结果表明:现有结构的烘箱上风道内流场不匀,纤维网表面温度场均匀性较差,针对仿真结果反映出的问题对烘箱结构进行了优化;优化后的烘箱仿真结果显示烘箱内部流场均匀性提升,纤维网上表面温度的总体均匀度由86.43%提升到93.06%。对烘箱进行结构优化后不仅提升了烘箱内部整体流场和温度场的均匀性,同时有利于降低烘箱的能耗。

关键词: 有限元分析, 热风黏合烘箱, 多孔介质模型, 均匀性, 内部流场, 无胶棉

Abstract:

Objective The production efficiency of a hot-air bonding could be low and not efficient in energy consumption because of uneven temperature and flow field inside the oven. In order to improve the performance of the oven and reduce energy consumption, this research aims to analyze the flow field and temperature field inside the hot-air bonding oven and optimize its structure to enhance the uniformity of the temperature and flow field inside the oven.

Method The internal flow field of the oven was simulated and optimized using the finite element analysis method. A three-dimensional model of the oven fluid domain was established using SolidWorks, and the boundary conditions for simulation calculation were set according to the working conditions of the oven. The flow resistance value of the fiber network was obtained through experimental measurement, and a porous medium model with the same flow resistance was set to replace the actual model of the fiber network, and the Fluent software was used to simulate and calculate the fluid domain model inside the oven. The correctness of the simulation modeling and calculation was verified through experiments.

Results The simulation results of the original oven model showed that the internal flow field had a large flow rate in ducts 1 and 3, and a small flow rate in ducts 2 and 4. There were severe vortices in ducts 1 and 3, causing irregular airflow and significant overall flow field non-uniformity. The lowest temperature on the surface of the fiber network was 130 ℃, with the overall uniformity of 86.43%, and a total standard deviation of 6.97. The data indicates that the temperature distribution on the surface of the fiber network was relatively scattered, and the temperature uniformity was poor. It was found from the optimized oven simulation results that the flow rates in each duct were basically the same. After installing a deflector in the upper duct, the deflector guided and directed the airflow, resulting in a stable airflow in the upper duct and the disappearance of vortices. This significantly improved the uniformity of the internal flow field in the oven. The lowest temperature on the surface of the fiber network was 150 ℃, The minimum temperature was increased by 20 ℃. The worst temperature uniformity at characteristic points was 90.1%, the temperature difference in different areas decreases, the overall uniformity was 93.6%, and the overall temperature standard deviation was decreased from 6.97 to 3.72, and the overall uniformity coefficient increased from 86.43% to 93.06%, indicating significant improvement in temperature field uniformity.

Conclusion After the optimization of the inlet channel structure and the upper duct, the uniformity of the flow field and flow rate inside the oven has been improved, and the generation of vortices in the upper duct has been reduced, resulting in a more uniform airflow. The standard deviation of the temperature on the fiber surface is decreased, the uniformity coefficient is increased, and the uniformity of the temperature field and flow field has been significantly improved. It is recommended to set the temperature at the oven inlet to around 165 ℃, at which the temperature on the surface of the fiber network inside the oven can meet the requirements for the temperature of the dual-component hot-melt fibers. This not only helps to improve the performance of the oven but also achieves the goal of energy saving and consumption reduction.

Key words: finite element analysis, hot air viscosity oven, porous media model, uniformity, internal flow field, non-glue cotton

中图分类号: 

  • TS173.7

图1

烘箱内部流体域模型"

图2

纤维网流阻实验测量设备图"

图3

压降-流速曲线"

图4

结构未优化的烘箱流线图"

图5

结构未优化的烘箱内纤维网上表面温度云图"

表1

结构未优化的烘箱内纤维网上表面温度均匀性数据"

特征线位置 平均值/℃ 标准差/℃ 均匀系数/%
y=0.5 m 154.32 7.27 83.67
y=1.0 m 156.28 8.72 81.94
y=1.5 m 160.16 8.37 86.13
y=2.0 m 159.61 5.67 88.66
y=2.5 m 163.10 6.06 89.79
x=0.6 m 153.28 5.19 89.60
x=1.2 m 156.44 5.26 89.03
x=1.8 m 150.89 8.88 83.07
x=2.4 m 159.91 4.85 90.58
x=3.6 m 161.02 9.45 82.06
均值 157.50 6.97 86.43

图6

验证实验设备"

图7

实验测量和仿真计算的温度数据"

图8

实验风道流场分布图"

图9

仿真结果中的风道内部流线图"

图10

结构优化后的烘箱流体域模型图"

图11

结构优化后的烘箱流线图"

图12

结构优化后的烘箱纤维网上表面温度云图"

表2

结构优化后的烘箱纤维网上表面温度均匀性数据"

特征线位置 平均值/℃ 标准差/℃ 均匀系数/%
y=0.5 m 167.12 2.75 93.62
y=1.0 m 164.64 2.94 94.31
y=1.5 m 174.11 2.95 93.88
y=2.0 m 169.51 2.40 95.34
y=2.5 m 172.31 2.64 94.58
x=0.6 m 169.13 4.73 91.42
x=1.2 m 169.64 5.37 90.96
x=1.8 m 169.42 4.72 91.13
x=2.4 m 168.45 4.74 92.01
x=3.6 m 165.99 3.93 93.50
均值 169.03 3.72 93.06
[1] 刘春丽, 陈慰来, 梁佳琦. 废纺再生毡基材料的制备及其性能[J]. 纺织学报, 2018, 39(11):56-60.
doi: 10.13475/j.fzxb.20170904506
LIU Chunli, CHEN Weilai, LIANG Jiaqi. Preparation and properties of waste textile regenerated felt materials[J]. Journal of Textile Research, 2018, 39(11):56-60.
doi: 10.13475/j.fzxb.20170904506
[2] 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012, 33(9):66-70.
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bounded ES-fiber fabric[J]. Journal of Textile Research, 2012, 33(9):66-70.
[3] 张永宁, 甘应进, 王建刚, 等. 有限元分析技术及其在纺织中的应用[J]. 纺织学报, 2002(5):85-86.
ZHANG Yongning, GAN Yingjin, WANG Jiangang, et al. Finite element analysis and its application to textile industry[J]. Journal of Textile Research, 2002(5):85-86.
[4] 武吉梅, 申宪文, 刘琳琳, 等. 凹版印刷机YF93烘箱流体分析及参数优化[J]. 振动与冲击, 2013, 32(22):63-67.
WU Jimei, SHEN Xianwen, LIU Linlin, et al. Oven fluid analysis and parameter optimization for gravure printing machine YF93[J]. Journal of Vibration and Shock, 2013, 32(22):63-67.
[5] 李青华, 李冬梅, 刘德平, 等. 锂电池悬浮式烘箱数值模拟分析与结构优化[J]. 包装工程, 2020, 41(21):224-230.
LI Qinghua, LI Dongmei, LIU Deping, et al. Numerical simulation analysis and structure optimization of lithium battery suspension oven[J]. Packaging Engineering, 2020, 41(21):224-230.
[6] SMOLKA J, NOWAK A J, RYBARZ D. Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computa-tions[J]. Journal of Food Engineering, 2010, 97(3):373-383.
[7] REK Z, RUDOLF M, ZUN I. Application of CFD simulation in the development of a new generation heating oven[J]. Strojniski Vestnik-Journal of Mechanical Engineering, 2012, 58(2):134-144.
[8] LEE S Y. Polyhedral mesh generation and a treatise on concave geometrical edges[J]. Procedia Engineering, 2015, 124:174-186.
[9] 冯浩洋, 苏新兵, 马斌麟, 等. 多面体网格在静气动弹性计算中的应用[J]. 飞行力学, 2016, 34(4):24-28.
FENG Haoyang, SU Xinbing, MA Binlin, et al. Application of polyhedron grid in static areo-elastic computation[J]. Flight Dynamics, 2016, 34(4):24-28.
[10] 项立银, 陈杨. 结构化与非结构化网格融合技术研究[J]. 雷达与对抗, 2012, 32(3):53-55.
XIANG Liyin, CHEN Yang. Study on structured and unstructured grid fusion technology[J]. Radar & ECM, 2012, 32(3):53-55.
[11] 刘佳. 合成革湿法线烘箱的数值模拟与结构优化[D]. 福州: 福州大学, 2017:20-22.
LIU Jia. Numerical simulation and structural optimization of oven in wet production line of synthetic leather[D]. Fuzhou: Fuzhou University, 2017:20-22.
[12] 闵诗源. 纸浆模塑干燥模型的建立及烘箱结构优化设计[D]. 武汉: 华中科技大学, 2019:36-37.
MIN Shiyuan. Establishment of pulp molding drying model and optimization design of oven structure[D]. Wuhan: Huazhong University of Science and Technology, 2019:36-37.
[13] 蔡苗, 张健业, 黄坤朋. 多孔材料计算模型拟合及其仿真应用研究[J]. 电声技术, 2021, 45(2):12-16.
CAI Miao, ZHANG Jianye, HUANG Kunpeng. Fitting of computational model of porous materials and simulation application[J]. Audio Engineering, 2021, 45(2):12-16.
[14] 刘波. 分离式压力耦合算法的研究及用于裂解与水合管式反应器的模拟[D]. 天津: 天津大学, 2014:26-28.
LIU Bo. A study of segregated pressure-based algorithm and simulations of cracking and hydration tubular reactors[D]. Tianjin:Tianjin University, 2014:26-28.
[15] 沈淘淘, 张文东, 崔体运. 提高温湿度标准箱的温度均匀度和波动度研究[J]. 中国计量, 2022(7):59-62.
SHEN Taotao, ZHANG Wendong, CUI Tiyun. et al. Study on temperature uniformity and volatility of improving temperature and humidity standard box[J]. China Metrology, 2022(7):59-62.
[1] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[2] 冯清国, 巫鳌飞, 任家智, 陈宇恒. 棉纺精梳机分离罗拉连杆驱动机构动力学仿真及有限元分析[J]. 纺织学报, 2023, 44(09): 197-204.
[3] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[4] 梁灼, 贾国欣, 任家智, 李金键. 棉纺精梳机钳板的变形及其应力分析[J]. 纺织学报, 2021, 42(12): 145-150.
[5] 王博文, 林森明, 岳晓丽, 钟毅, 陈慧敏. 织物喷雾上浆雾化质量评价[J]. 纺织学报, 2021, 42(12): 90-96.
[6] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[7] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[8] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[9] 吕常亮, 郝志远, 陈慧敏, 张慧乐, 岳晓丽. 基于均匀化理论的小变形纬编针织物线圈形态有限元分析[J]. 纺织学报, 2021, 42(03): 21-26.
[10] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[11] 武鲜艳, 申屠宝卿, 马倩, 金利民, 张威, 谢胜. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(08): 32-38.
[12] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[13] 杨红英, 惠志奎, 杨志晖, 张靖晶, 谢宛姿, 周金利. 基于汉风色典的不同色差公式的色差均匀性[J]. 纺织学报, 2020, 41(02): 103-108.
[14] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[15] 季敏杰 岳晓丽 钟毅 陈慧敏. 均匀轧辊压力配伍模型设计[J]. 纺织学报, 2018, 39(11): 158-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!