纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 153-161.doi: 10.13475/j.fzxb.20230805801

• 染整工程 • 上一篇    下一篇

用于增强海水淡化性能的聚吡咯功能化废旧织物

周奉凯1, 李沂蒙1, 彭佳敏1, 毛吉富1,2(), 王璐1,2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2023-08-25 修回日期:2024-08-12 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 毛吉富(1986—),男,研究员,博士。主要研究方向为生物医用纺织材料。E-mail:jifu.mao@dhu.edu.cn
  • 作者简介:周奉凯(1998—),男,博士生。主要研究方向为生物医用纺织品。
  • 基金资助:
    国家自然科学基金青年科学基金项目(52005097);中央高校基本科研业务费专项资金资助项目(2232020G-01);中央高校基本科研业务费专项资金资助项目(CUSF-DH-T-2023016);高等学校学科创新引智计划资助项目(BP0719035)

Polypyrrole functionalized waste fabrics and their applicaiton in to enhancing desalination performance

ZHOU Fengkai1, LI Yimeng1, PENG Jiamin1, MAO Jifu1,2(), WANG Lu1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2023-08-25 Revised:2024-08-12 Published:2024-11-15 Online:2024-12-30

摘要:

针对传统废旧织物回收再利用方式繁琐,大批量处理难且价值低等造成的资源浪费问题,通过在废旧织物(WF)表面原位聚合聚吡咯制备聚吡咯功能化废旧织物(PPy/WF)用作电极材料,其制备简单且可大规模化生产。利用傅里叶变换红外光谱、EDS能谱对PPy/WF结构进行分析。探究不同电容式去离子(CDI)电极组装对脱盐性能的影响,结果表明:PPy/WF作为阳极材料与阴极材料MnO2组装成CDI时,保证了出色的脱盐能力(44.46 mg/g)和脱盐速率(9.81 mg/(g·min));织物中纤维和纱线之间形成的稳定孔隙结构确保了出色的脱盐稳定性(30次循环后仅降低10.71%)。这种简单、高经济效益的废旧织物回收策略,有助于资源再利用并缓解水资源短缺。

关键词: 废旧织物回收利用, 聚吡咯, 电容去离子, 海水淡化, 电极材料

Abstract:

Objective Waste fabrics (WF) cause serious environmental pollution and waste of resources, while conventional recycling methods are known to be cumbersome, difficult for mass processing, and of low value, which is against the carbon neutrality goals and limits the sustainability of the textile industry. On the other hand, the capacitive deionization (CDI) desalination capacity is too low due to the simultaneous existence of co-ions adsorption and counterions adsorption on the surface of the electrode materials. Therefore, this paper proposes a simple and easy large-scale processing method for high-value recycling of waste fabrics aiming for efficient desalination.

Method Waste fabrics are soft and porous, with a high specific surface area and excellent mechanical properties, providing ideal mechanical support for the CDI electrode material. Under the oxidation of ferric chloride hexahydrate, pyrrole easily polymerized on the surface of waste fabrics (plain cotton fabrics) to form a polypyrrole coating (PPy/WF). Through different electrode assembly modes, PPy/WF was selected as the cathode electrode of CDI to selectively adsorb Cl-, and MnO2 as the anode electrode of CDI to selectively adsorb Na+, reducing the influence of co-ions adsorption to improve the desalination capacity and stability.

Results The results of SEM, FT-IR, and EDS proved that polypyrrole was successfully in-situ polymerized on the surface of waste fabrics. When the polypyrrole coating was polymerized on the surface of the waste fabric, the polypyrrole coating had low surface energy and showed hydrophobic properties, but PPy/WF could still be infiltrated in a very short time (150 ms) due to the large pore structure between the waste fabric fibers and the yarns. The CV curves of the MnO2 and PPy/WF electrodes were approximately rectangular and leaf-shaped, respectively, indicating that no redox reaction occurred. This proved that the ions were adsorbed on the surface of the electrode to form an electric double-layer (EDL). The galvanostatic charge/discharge curves of MnO2 and PPy/WF electrodes were approximately symmetric, further confirming their EDL behavior. The specific capacitance of the MnO2 and PPy/WF electrodes decreased gradually as the current density increased from 0.1 A/g to 1.0 A/g and reached a maximum of 6.41 F/g and 80.81 F/g (at 0.1 A/g), respectively. EIS results showed that PPy/WF and MnO2 electrodes approximated straight lines at low frequencies and semicircle curves at high frequencies, which were beneficial to the diffusion and transfer of ions. The concentration of NaCl solution declined the most when PPy/WF as the anode was coupled with MnO2, which was possibly attributable to the asymmetric configuration of the electrode to avoid the adsorption of co-ions. The desalination capacity of the PPy/WF-MnO2 assembled form (39.89 mg/g) was much greater than that of the symmetrically arranged CDI electrode form. The CDI Ragone plotted by the desalination rate versus desalination capacity showed that the desalination rate was higher at higher operating voltages and up to 8.42 mg/(g·min). The initial and maximum desalination capacity during the repetitive cycles reached 40.52 mg/g and 44.97 mg/g, respectively, and the desalination capacity still reached 36.18 mg/g after 30 desalination cycles with only a 10.71% reduction, showing excellent cycle stability in desalination.

Conclusion The influences of different CDI electrode assemblies on the desalination performance were investigated, and the results showed that when the PPy/WF was assembled into CDI with the cathode material MnO2 as an anode material, excellent desalination capacity (44.46 mg/g) and desalination rate (9.81 mg/(g·min)) were guaranteed. The stable pore structure formed between the fibers and yarns in the fabric ensures excellent desalination stability (only 10.71% reduction after 30 cycles). This simple and cost-effective recycling strategy for used fabrics helps reuse resources and alleviates water scarcity. PPy/WF exhibited excellent desalination capacity, and it has attractive economic benefits by virtue of simple synthesis, large batch preparation, and low cost. It is worth noting that the overall structure of the PPy/WF has not been significantly damaged after 30 cycles, and can be repolymerized with PPy to prolong the service life of waste fabrics.

Key words: recycling of waste fabric, polypyrrole, capacitive deionization, desalination, electrode material

中图分类号: 

  • X791

图1

PPy/WF的制备示意图"

图2

WF原位聚合聚吡咯前后的SEM图"

图3

PPy/WF的化学成分表征"

图4

WF与PPy/WF的断裂强力及浸润性测试"

图5

不同电极在不同扫速下的CV曲线"

图6

不同电极在不同电流密度下的GCD曲线"

图7

不同电极在不同电流密度下的比电容及其交流阻抗谱图"

图8

CDI脱盐原理图及NaCl溶液质量浓度与电导率的函数关系"

图9

CDI脱盐性能"

图10

PPy/WF在NaCl溶液(1 500 mg/L,电压1.2 V)中的长期循环脱盐性能"

[1] 张玮, 刘姝瑞, 张明宇, 等. 废旧纺织品回收再利用的研究进展[J]. 纺织科学与工程学报, 2023, 40(1): 96-102,108.
ZHANG Wei, LIU Shurui, ZHANG Mingyu, et al. Research progress of recycling of textile waste[J]. Journal of Textile Science and Engineering, 2023, 40(1): 96-102,108.
[2] 黄玲, 王帅, 张宇, 等. 氮/磷共掺杂废旧棉织物基活性炭的制备及其超级电容器性能(英文)[J]. 新型炭材料, 2021, 36(6): 1128-1137.
HUANG Ling, WANG Shuai, ZHANG Yu, et al. Preparation of a N-P co-doped waste cotton fabric-based activated carbon for supercapacitor electrodes[J]. New Carbon Materials, 2021, 36(6): 1128-1137.
[3] CHEN X, AN J, CAI G, et al. Environmentally friendly flexible strain sensor from waste cotton fabrics and natural rubber latex[J]. Polymers, 2019, 11(3): 404.
[4] CHENG J B, ZHAO H B, ZHANG A N, et al. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2022, 126: 266-274.
[5] 门明峰. 涤棉纺织面料的回收技术研究[D]. 西安: 西安工程大学, 2020: 90.
MEN Mingfeng. Recycling Technology research of polyester/cotton textile fabrics[D]. Xi'an: Xi'an Polytechnic University, 2020: 90.
[6] ROY S, ZHAI L, VAN HAI L, et al. One-step nanocellulose coating converts tissue paper into an efficient separation membrane[J]. Cellulose, 2018, 25(9): 4871-4886.
[7] DU H, LIU W, ZHANG M, et al. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J]. Carbohydrate Polymers, 2019, 209: 130-144.
doi: S0144-8617(19)30020-7 pmid: 30732792
[8] 李宁. 以磷酸/多聚磷酸为溶剂的液晶纤维素溶液的制备及结构表征[D]. 上海: 东华大学, 2011: 74.
LI Ning. Preparation and structure characterisation of liquid crystalline solutions of cellulose in phosphoric acid/polyphosphoric acid[D]. Shanghai: Donghua University, 2011: 74.
[9] 董腾, 陈建义, 张帅, 等. 废旧棉质纺织品资源化利用新方法[J]. 化学与生物工程, 2013, 30(10): 72-76.
DONG Teng, CHEN Jianyi, ZHANG Shuai, et al. A new process of recycling and utilization of waste cotton textiles[J]. Chemistry & Bioengineering, 2013, 30(10): 72-76.
[10] 檀畅, 李蓓, 王傲, 等. 基于活性炭电极的电容去离子技术制备纯水应用研究[J]. 林产化学与工业, 2023, 43(1): 72-78.
TAN Chang, LI Bei, WANG Ao, et al. The application of capacitive deionization technology based on activated carbon electrode to produce pure water[J]. Chemistry and Industry of Forest Products, 2023, 43(1): 72-78.
[11] 王世轩, 蔡延萌, 徐世昌, 等. 聚间苯二胺/碳纳米管复合材料制备及其电容法脱盐研究[J]. 化学工业与工程, 2022, 39(2): 90-99.
WANG Shixuan, CAI Yanmeng, XU Shichang, et al. Preparation and performance test of poly-m-phenylene diamine and CNT composite material in capacitive deionization process[J]. Chemical Industry and Engineering, 2022, 39(2): 90-99.
[12] 王少斌. 基于不同还原条件下石墨烯电极的制备及其电容去离子性能研究[D]. 常州: 常州大学, 2023: 92.
WANG Shaobin. Study on The Capacitive deionization properties of graphene electrodes prepared by different reduction conditions[D]. Changzhou: Changzhou University, 2023: 92.
[13] 李云, 孙婧, 李洪祥, 等. 电容去离子用碳基电极材料性能提升策略[J]. 南京师大学报:自然科学版, 2022, 45(4): 128-133.
LI Yun, SUN Jing, LI Hongxiang, et al. Strategies to enhance performance of carbon-based electrode material for capacitive deionization[J]. Journal of Fanjing Normal University: Natural Science Edition, 2022, 45(4): 128-133.
[14] 孙娜, 阚二姐, 诸葛炳森, 等. 电容去离子水处理技术综述报告[J]. 广州化工, 2022, 50(10): 11-13.
SUN Na, KAN Erjie, ZHUGE Bingsen, et al. Reviews on capacitive deionization technology[J]. Guangzhou Chemical Industry, 2022, 50(10): 11-13.
[15] TAN G, LU S, XU N, et al. Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization[J]. Environmental Science & Technology, 2020, 54(9): 5843-5852.
[16] 周建伟, 赵生领, 张学全, 等. 聚ε-己内酯/聚吡咯电纺膜的制备与性能[J]. 高分子学报, 2010(9): 1094-1099.
ZHOU Jianwei, ZHAO Shengling, ZHANG Xuequan, et al. Preparation and properties of electrospun ploy(ε-caprolactone)/polypyrrole membranes[J]. Acta Polymerica Sinica, 2010(9): 1094-1099.
[17] SHAO Y, FAN Z, ZHONG M, et al. Polypyrrole/bacterial cellulose nanofiber composites for hexavalent chromium removal[J]. Cellulose, 2021, 28(4): 2229-2240.
[18] 彭佳敏, 李沂蒙, 战经环, 等. 针织导电心肌补片的构建及力电性能[J]. 东华大学学报(自然科学版), 2023, 49(4): 1-7, 43.
PENG Jiamin, LI Yimeng, ZHAN Jinghuan, et al. Construction and mechanoelectrical properties of knitted conductive myocardial patch[J]. Journal of Donghua University (Natural Science), 2023, 49 (4): 1-7, 43.
[19] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 177-186.
HAO Lu, YU Demei. Research progress in polypyrrole nanocomposites[J]. Materials Reports, 2023, 37(9): 177-186.
[20] BALINT R, CASSIDY N J, CARTMELL S H. Conductive polymers: towards a smart biomaterial for tissue engineering[J]. Acta Biomaterialia, 2014, 10(6): 2341-2353.
doi: 10.1016/j.actbio.2014.02.015 pmid: 24556448
[21] 董猛. 聚吡咯/金属复合涤纶织物的开发及其性能研究[D]. 天津: 天津工业大学, 2016: 70.
DONG Meng. Development and performance study of polypyrrole/metal composite polyester fabric[D]. Tianjin: Tiangong University, 2016: 70.
[22] LI Y, CHEN N, LI Z, et al. Reborn three-dimensional graphene with ultrahigh volumetric desalination capa-city[J]. Advanced Materials, 2021, 33(48): 2105853.
[23] 肖迎红, 王静, 孙晓亮, 等. 导电聚吡咯的电化学行为及表面形貌研究[J]. 南京理工大学学报: 自然科学版, 2005(4): 483-485, 90.
XIAO Yinghong, WANG Jing, SUN Xiaoliang, et al. Electrochemical behavior and surface morphology of conducting polypyrrole[J]. Journal of Nanjing University of Science and Technology, 2005(4): 483-485, 90.
[24] 李胜, 邱于兵, 郭兴蓬. 不同状态下聚吡咯膜的电化学阻抗[J]. 物理化学学报, 2010, 26(3): 601-609.
LI Sheng, QIU Yubing, GUO Xingpeng. Electrochemical impedance of polypyrrole films under different conditions[J]. Acta Physico-Chismica Sinica, 2010, 26(3): 601-609.
[25] ZHOU F K, LI Y, WANG S S, et al. Turning waste into valuables: in situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desali-nation[J]. Separation and Purification Technology, 2023. DOI:10.1016/j.seppur.2022.122643.
[26] 薛娟琴, 王温桥, 孙祺鑫, 等. 分层电沉积制备聚吡咯/壳聚糖/氧化石墨烯复合电极及其在CDI技术中的应用[J]. 功能材料, 2020, 51(9): 9151-9158.
doi: 10.3969/j.issn.1001-9731.2020.09.023
XUE Juanqin, WANG Wenqiao, SUN Qixin, et al. Preparation of polypyrrole/chitosan/graphene oxide composite electrode by layered electrodeposition and its application in CDI technology[J]. Journal of Functional Materials, 2020, 51(9): 9151-9158.
doi: 10.3969/j.issn.1001-9731.2020.09.023
[1] 李沂蒙, 单梦琪, 李雯昕, 周奉凯, 毛吉富, 王富军, 王璐. 聚吡咯基可拉伸导电心肌补片的制备及其电传导性能[J]. 纺织学报, 2024, 45(12): 89-97.
[2] 姜梦敏, 王一璠, 金欣, 王闻宇, 肖长发. 聚吡咯共轭结构对碳纤维增强树脂基复合材料热循环稳定性能的影响[J]. 纺织学报, 2024, 45(10): 23-30.
[3] 鲁颖科, 金炳奇, 徐涛, 高一蕾, 邓炳耀, 李昊轩. 基于粘胶纤维非织造材料的太阳能水电联产装置设计及其性能[J]. 纺织学报, 2024, 45(07): 78-85.
[4] 陈莹, 沈娜弟, 张露. 全纤维电容式传感器的结构设计及其性能[J]. 纺织学报, 2024, 45(05): 43-50.
[5] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[6] 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161.
[7] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[8] 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231.
[9] 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17.
[10] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[11] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[12] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[13] 韩宜君, 许君, 畅琪琪, 张诚. 纺织基柔性染料敏化太阳能电池的研究进展[J]. 纺织学报, 2022, 43(05): 185-194.
[14] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[15] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!