纺织学报 ›› 2017, Vol. 38 ›› Issue (11): 143-149.doi: 10.13475/j.fzxb.20170202107

• 管理与信息化 • 上一篇    下一篇

重叠纤类图像的凹点匹配和分割算法

  

  • 收稿日期:2017-02-17 修回日期:2017-06-19 出版日期:2017-11-15 发布日期:2017-11-15

Concave points matching and segmentation algorithm for overlapped fiber image

  • Received:2017-02-17 Revised:2017-06-19 Online:2017-11-15 Published:2017-11-15

摘要:

为解决混纺纤维类图像中多根纤维的分离和识别难题,提出一种基于凹点匹配的新方案来实现重叠纤维分割。首先在图像轮廓寻找角点,利用三角形矢量面积法找到角点中包含的凹点;然后通过凹点、该凹点的前继点(或后继点)和目标凹点构成的三角形,结合凹点的几何特征来判断该凹点和目标凹点是否匹配;最后通过将匹配凹点连线来实现图像中的纤维分割。与现有分割算法相比,新的方法采用了凹点距离和三角形构造原理相结合的机制来实现匹配。实验结果表明,该算法可适用于多根纤维相互粘连或交叉的复杂场景,且有较高的分割精度。

关键词: 图像分割, 重叠纤维, 角点, 矢量三角形面积, 凹点匹配

Abstract:

In order to identify the different components which are adhered or crossed each other in a hybrid fiber image, a fiber segmentation algorithm based on concave points matching in the overlap area is proposed. The detection of contour corners is firstly obtained by using the classical K-cosine curvature algorithm, the vector triangle area method is also used to find contour concave points from the corner set. For a given concave point, the precursor point (or subsequent point) and the target point are selected to form a triangle. The triangle and other significant features are used to judge whether the concave point and target point are matched. At last, through the connection of the matching concave points, the segmentation of overlapped fiber image can be realized. Compared with the existing algorithms of segmentation, the new method employs a mechanism combined with distance between concave points and triangular construction principle to achieve the purpose of matching. The experimental results show that the algorithm can deal with the situation of adhesive fiber and cross fiber, with high segmentation accuracy over 80% in complex scenes.

Key words: fiber image segmentation, overlapped fiber, corner, vector triangle area, concave point matching

[1] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[2] 张成梁 李蕾 董全成 葛荣雨. 应用区域颜色分割的机采棉杂质检测方法[J]. 纺织学报, 2017, 38(07): 135-141.
[3] 尉苗苗 李岳阳 蒋高明 丛洪莲. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11): 48-54.
[4] 曹丽 胡旭东. 基于多特征融合的织物印花图像分割[J]. 纺织学报, 2016, 37(08): 149-153.
[5] 周慧 张华熊 胡洁 康锋. 基于平滑滤波和分水岭算法的重组织织物图像分割[J]. 纺织学报, 2015, 36(08): 38-42.
[6] 卢雨正 高卫东. 基于图像分割的拼色纺织品分色算法[J]. 纺织学报, 2012, 33(9): 55-60.
[7] 景军锋, 孟泰, 李鹏飞. 基于模糊C均值聚类的纺织品印花图像分割[J]. 纺织学报, 2012, 33(6): 97-100.
[8] 张扬 蒋高明 姚君洲 童有成. 基于MRF层次模型的贾卡经编针织物图像分割技术[J]. 纺织学报, 2012, 33(12): 102-106.
[9] 贾立锋. 重叠纤维的分离计数算法[J]. 纺织学报, 2011, 32(5): 43-49.
[10] 李鹏飞;王刚;景军锋;焦珂. 基于JSEG算法的纺织品印花图像分割[J]. 纺织学报, 2010, 31(5): 137-140.
[11] 包晓敏;彭霄;汪亚明;曹作宝. 基于贝叶斯决策及半监督聚类的织物图像分割[J]. 纺织学报, 2010, 31(2): 125-128.
[12] 董建明;胡觉亮. 一种有效的服装尺寸自动测量方法[J]. 纺织学报, 2008, 29(5): 98-101.
[13] 万永菁;万光逵. 图像分割算法在花型自动识别中的应用[J]. 纺织学报, 2007, 28(5): 63-65.
[14] 诸葛振荣;徐敏;刘洋飞. 基于Mean Shift的织物图像分割算法[J]. 纺织学报, 2007, 28(10): 108-111.
[15] 刘玄木;沈毅;王寿兵. 织物悬垂测试系统中织物边缘的识别[J]. 纺织学报, 2006, 27(3): 8-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!