纺织学报 ›› 2018, Vol. 39 ›› Issue (03): 148-153.doi: 10.13475/j.fzxb.20170504506

• 机械与器材 • 上一篇    下一篇

应用LZHUF算法对嵌入式针织系统控制数据压缩

  

  • 收稿日期:2017-05-24 修回日期:2017-12-06 出版日期:2018-03-15 发布日期:2018-03-09

Data compression of embedded knitting system based on LZHUF algorithm 

  • Received:2017-05-24 Revised:2017-12-06 Online:2018-03-15 Published:2018-03-09

摘要:

为解决针织物控制数据量大,花型数据重复性高,且要求无损传输等问题,提出了一种针织控制数据压缩的 LZHUF 算法,给出了算法实现流程。利用 LZSS 算法对待压缩织物数据同时编码,再对输出的字符使用频率的高低进行动态哈夫曼编码。该算法可移植到嵌入式平台,对织物数据解压缩。实验结果显示,该算法可在嵌入式针织系统中无损解压缩织物数据,运行效率较高,压缩率相对传统串表压缩算法,明显提高5%以上,说明该算法具有较高的压缩率,算法复杂度低,可在存储空间和内存空间有限的嵌入式针织控制系统中无损还原织物控制数据;同时该算法可作为纺织 CAD 的数据压缩算法。

关键词: 数据压缩算法, 织物控制数据, 压缩率, 嵌入式针织系统

Abstract:

In order to solve problems of big volume of the knitted fabric control data, high repeatability of pattern data and non-destructive transmission, a knitting control data compression algorithm was presented. The realization algorithm process was given. LZSS was used to encode the compressed fabric data simultaneously, and then  dynamic Huffman coding was carried out according to the application frequency of output characters. The algorithm could be transplanted to the embedded platform to achieve the decompression of fabric data. The experimental results show that the algorithm can compress the fabric data in the embedded knitting system, and the algorithm is more efficient. Compared with the conventional Lemple-Ziw-Welch encoding (LZW)   algorithm, the compression ratio is improved obviously by more than 5%. It is proved that the algorithm has high compression ratio and low complexity, and can reduce the fabric control data in the embedded knitting control system with limited storage space and memory space. At the same time, the algorithm can be used as a data compression algorithm for textile CAD.

Key words: data compression algorithm, fabric control data, compression ratio, embedded knitting system

[1] 冯志红.;朱良均;闵思佳;蔡杰;吕洁. 高弹高保暖丝绵的性能[J]. 纺织学报, 2007, 28(4): 22-25.
[2] 楼英;王府梅;刘维. 木棉絮料的压缩性能测试分析[J]. 纺织学报, 2007, 28(1): 10-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!