纺织学报 ›› 2018, Vol. 39 ›› Issue (08): 58-62.doi: 10.13475/j.fzxb.20170702906

• 纺织工程 • 上一篇    下一篇

玻璃纤维织物在剪切变形作用下的渗透率

  

  • 收稿日期:2017-08-15 修回日期:2018-01-25 出版日期:2018-08-15 发布日期:2018-08-13

Permeability of glass fiber fabrics under shear deformation

  • Received:2017-08-15 Revised:2018-01-25 Online:2018-08-15 Published:2018-08-13

摘要:

为研究织物剪切变形对纤维增强材料渗透行为的影响,采用真空导入模塑工艺测试玻璃纤维织物预成型体的表观渗透率。结果表明:剪切变形降低了预成型体的渗透率;对于斜纹织物,不同的剪切方向使纤维增强材料的渗透率呈现一定的差异,在剪切角为10°时,异向剪切的渗透率较同向剪切高出约26%;对于不同织物组织,剪切
变形下的渗透率差异显著;一般情况下,随着剪切角的增大纤维增强材料的渗透率逐渐下降,当织物剪切30°后,其渗透率平均下降约50%,但平纹织物在剪切角为10°时,渗透率却略有上升;剪切变形引起了织物整体渗透行为的改变,流动前峰的形状由一条平行于纬纱的直线逐渐变化成倾斜的直线。

关键词: 玻璃纤维织物, 真空导入模塑工艺, 渗透率, 剪切变形, 织物组织, 流动前峰

Abstract:

In order to study the influence of shear deformation of the fabric on the permeability of fiber reinforced material, the apparent permeability of glass fiber fabric preform was tested by vacuum infusion molding process. The results indicated that shear deformation reduces the permeability of preform. For twill fabric, different shear directions make the permeability of fiber reinforced material different. When the shear direction does not coincide with the twill line direction, the permeability of fabrics sheared by 10° is about 26% higher. Different fabric weave differs significantly in permeability. In general, the permeability of fiber reinforced material decreases as shearing angle increases. The permeability of fabric declines about 50% on average as its shearing angle goes up to 30°. However, for plain weave fabric, the permeability of fabric being sheared by 10°rises slightly. The shear deformation causes change of the overall permeability of fabric, and the shape of the flow front varies gradually from a straight line parallel to the weft yarn to an inclined straight line.

Key words: glass fiber fabric, vacuum infusion molding process, permeability, shear deformation, fabric weave, resin flow front

[1] Jiang J, Su Y, Zhou L et al. Effect of Nesting on the Permeability of Multilayer Unidirectional Fabrics[J]. Applied Composite Materials, 2016:1-18.
[2] Li M, Wang S, Gu Y, et al. Dynamic capillary impact on longitudinal micro-flow in vacuum assisted impregnation and the unsaturated permeability of inner fiber tows[J]. Composites Science & Technology, 2010, 70(11):1628-1636.
[3] 杨金水, 肖加余, 曾竟成,等. 真空导入模塑工艺树脂流动规律研究[J]. 宇航材料工艺, 2007, 37(5):22-26. Yang jinshui, Xiao Jiayu, Zeng Jingcheng, et al. Study on resin flow in vacuum infusion molding process[J]. ?Aerospace Materials and Technology, 2007, 37(5):22-26.
[4] 高彦涛, 李炜, 罗永康. VARTM工艺中多层玻纤织物渗透规律研究与工艺优化[J]. 玻璃钢/复合材料, 2009(6):54-57. Gao Yantao, Li Wei, Luo Yongkang. Study on infiltration law and process optimization of multilayer glass fiber fabric in VARTM process[J]. Fiber Reinforced Plastics /Composites, 2009(6):54-57.
[5] 李永静, 晏石林, 李德权,等. 液体模塑成型工艺中纤维束横向渗透率的细观数值模拟[J]. 纺织学报, 2015, 36(8):22-27. Li Yongjing, Yan Shilin, Li Dequan, et al. Meso scale numerical simulation of transverse permeability of fiber bundle in liquid forming process[J]. Journal of Textile Research,2015,36(8):22-27.
[6] 田正刚, 祝颖丹, 张垣,等. 剪切效应对纤维增强材料渗透率的影响[J]. 武汉理工大学学报, 2005, 27(2):4-6. Tian Zhenggang, Zhu Yingdan, Zhang Yuan, et al. Effect of shear on permeability of fiber reinforced material[J]. Journal of Wuhan University of Technology, 2005, 27(2):4-6.
[7] 杨波, 金天国, 毕凤阳,等. 预成形体渗透率预测及剪切变形的影响[J]. 材料工程, 2014(11):7-14. Yang Bo, Jin Tianguo, Bi Fengyang, et al. Prediction of preform permeability and influence of shear deformation[J]. Journal of Materials Engineering, 2014(11):7-14.
[8] Demaría C, Ruiz E, Trochu F. In-plane anisotropic permeability characterization of deformed woven fabrics by unidirectional injection. Part I: Experimental results[J]. Polymer Composites, 2010, 28(6):797-811.
[9] Endruweit A, Ermanni P. The in-plane permeability of sheared textiles. Experimental observations and a predictive conversion model[J]. Composites Part A, 2004, 35(4):439-451.
[10] Arbter R, Beraud J M, Binetruy C, et al. Experimental determination of the permeability of textiles: A benchmark exercise[J]. Composites Part A Applied Science & Manufacturing, 2011, 42(9):1157-1168.
[11] Gebart B R. Permeability of Unidirectional Reinforcements for RTM[J]. Journal of Composite Materials, 1992, 26(8):1100-1133.
[12] Parnas R S, Salem A J. A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements[J]. Polymer Composites, 1993, 14(5):383-394.
[13] 邱中琦. 玻璃纤维织物一维面内渗透率的实验研究[D]. 武汉:武汉理工大学, 2010. Qiu Zhongqi. Experimental study on one-dimensional permeability of glass fabric [D]. Wuhan: Wuhan University of Technology, 2010.
[1] 李敏 赵影 张丽平 张奕 付少海. 涤纶针织物数码印花清晰度的影响因素[J]. 纺织学报, 2018, 39(05): 62-66.
[2] 蒋志青 马延涛 郭亚 马建伟 陈韶娟. 仿针织牛仔面料的开发及性能评价[J]. 纺织学报, 2018, 39(03): 45-49.
[3] 耿奕 蒋金华 陈南梁. 经编四轴向玻璃纤维织物的渗透行为和渗透率[J]. 纺织学报, 2017, 38(10): 49-56.
[4] 孔令乾 纪芮 陈文超 杨洪芳. 固化工艺对玻璃纤维织物增强材料摩擦性能的影响[J]. 纺织学报, 2017, 38(07): 95-100.
[5] 黄帅 张毅 周志华. 采用因子分析法的服用织物电磁屏蔽性能影响因素分析[J]. 纺织学报, 2016, 37(2): 149-0.
[6] 段永洁 谢春萍 刘新金. 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016, 37(09): 31-36.
[7] 李永静 晏石林 李德权 严飞. 液体模塑成型工艺中纤维束横向渗透率的细观数值模拟[J]. 纺织学报, 2015, 36(08): 22-27.
[8] 张鹤誉 郑振荣 赵晓明 孙晓军. 玻璃纤维交织织物的热传递数值模拟[J]. 纺织学报, 2015, 36(03): 28-0.
[9] 郑振荣 赵晓明 鲁济龙 孙晓军. 隔热耐烧蚀玻璃纤维织物的制备[J]. 纺织学报, 2014, 35(3): 32-0.
[10] 陈和春 陈桂香. 圆环形仿形机织物的剪切变形[J]. 纺织学报, 2013, 34(4): 53-56.
[11] 张江丰 樊臻 张森林. 基于核模糊聚类的机织物组织自动识别[J]. 纺织学报, 2013, 34(12): 131-0.
[12] 蒋金华 汪泽幸 陈南梁. LCM中碳纤维织物结构对横向渗透性的影响[J]. 纺织学报, 2013, 34(1): 40-45.
[13] 罗炳金. 棉织锦3 种色彩组织模型设计与应用[J]. 纺织学报, 2012, 33(7): 37-42.
[14] 包晓敏;曹作宝;汪亚明;周砚江;朱寒宇. 基于嗅觉神经网络的织物组织识别[J]. 纺织学报, 2011, 32(4): 52-56.
[15] 潘如如;高卫东;刘基宏;王鸿博. 机织物组织自动识别技术[J]. 纺织学报, 2010, 31(6): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王延熹. 我国发展非织造布方向的探讨[J]. 纺织学报, 1986, 7(05): 60 -63 .
[2] 陈聚富. 液压传动织轴运输车[J]. 纺织学报, 1987, 8(12): 15 -16 .
[3] 傅旦;陈春堂. 橡毯式防缩机的预缩机理及缩率控制的探讨[J]. 纺织学报, 1989, 10(07): 21 -24 .
[4] 朱友名. 微处理机在棉纺织厂的试用[J]. 纺织学报, 1984, 5(10): 52 -55 .
[5] 王红凤;陈玲玲. 棉织物热转移印花的机制[J]. 纺织学报, 2009, 30(02): 74 -78 .
[6] 林建龙;王小北;张力. 新型电脑刺绣机挑线机构圆柱螺旋弹簧设计[J]. 纺织学报, 2009, 30(02): 121 -121124 .
[7] 王晓明. 棉坯布用过氧化氢-尿素的退煮漂一步法研究[J]. 纺织学报, 2004, 25(02): 79 -80 .
[8] 刘若冰;朱谱新;吴大诚. 溶剂法裂离桔瓣型PET/PA6复合纤维[J]. 纺织学报, 1997, 18(04): 18 -20 .
[9] 冯美玲. 125目高目镍网通过技术鉴定[J]. 纺织学报, 1988, 9(02): 24 .
[10] 徐穆卿. 积点法计算印染实物劳动生产率[J]. 纺织学报, 1982, 3(11): 52 -54 .