纺织学报 ›› 2018, Vol. 39 ›› Issue (12): 175-180.doi: 10.13475/j.fzxb.20180806106

• 纺织科技新见解学术沙龙专栏 • 上一篇    

气泡纺技术及其纳米纤维的工业化生产

    

  1.  
  • 收稿日期:2018-08-27 修回日期:2018-09-18 出版日期:2018-12-15 发布日期:2018-12-17
  • 基金资助:

     

Bubble electrospinning and industrial production of nanofiber

  • Received:2018-08-27 Revised:2018-09-18 Online:2018-12-15 Published:2018-12-17

摘要:

为开发快速、高效、稳定且简单的纳米纤维制备装置,介绍了气泡静电纺丝技术及其发展现状,综述了气泡纺丝技术的研究成果以及各种气泡纺丝装置的纺丝原理和优缺点。通过深入分析气泡纺的过程及原理,提出不同的改善方法得到了不同的气泡纺丝装置:针对节约资源和环保要求提出的气流气泡纺丝技术用气流代替高压静电更安全便捷;针对工业化生产研发的新型气泡静电纺丝装置,其产量为单针头静电纺丝产量的10 倍,实现了气泡纺纳米纤维的工业化生产;临界气泡静电纺丝技术可避免气泡在破裂瞬间失去大部分能量,减少资源浪费,进一步提高了纺丝效率。实践表明,气泡纺丝技术是一种设备制作简单、操作方便、成本低廉、生产效率高、适用性广、适合工业化生产纳米纤维的纺丝方法。

关键词: 气泡静电纺, 气流气泡纺, 纳米纤维, 临界气泡纺

Abstract:

In order to meet the requirements of rapid, efficient, stable and simple preparation of nanofibers, bubble spinning and the development of the bubble spinning were introduced in this paper, the research achievements of bubble spinning technology and various bubble spinning equipment′ s principle were reviewed, and the advantages and disadvantages of these bubble spinning was also discussed. Through in-depth analysis of the process and principle of bubble spinning, various improvement methods were put forward and a variety of different bubble spinning devices were obtained. Aming at resources saving and environmental protection requirements, the blown bubble spinning was developed, which is safer and more convenient to use air flow instead of high voltage. Due to meet industrial production, a novel bubble electrospinning equipment was developed, its output was ten times that of single needle electrospinning, the industrial production of bubble spinning nanofibers was realized. Soon the critical bubble electrospinning was put forwarded. The novelty method not only avoids the waste of resources but also greatly reduces the loss of energy when bubbles burst. It also further improves the efficiency of spinning. The practices show that the bubble spinning technology is a kind of spinning method with simple equipment, convenient operation, low cost, high production efficiency, wide applicability, and suitable for industrial production of nanofibers.

Key words: bubble electrospinning, blown bubble spinning, nanofiber, critical bubble electrospinning

[1] YE Guichao, ZHU Xiaoyi, CHEN Shuai, et al. Na-noscale engineering of nitrogen-doped carbon nano-fiber aerogels for enhanced lithium ion storage[J]. Journal of Materials Chemistry A, 2017, 5(18): 8247-8254.
[2] LUO Hang, ROSCOW James, ZHOU Xuefan, et al. Ultra-high Discharged Energy Density Capacitor using High Aspect Ratio Na0.5Bi0.5TiO3 Nanofibers[J]. Journal of Materials Chemistry A, 2017, 5(15): 7091-7102.
[3] WANG Qi, JIAN Muqaing, WANG Chunya, et al. Car-bonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin[J]. Advanced Functional Materials, 2017, 27(9): 1605657.
[4] ZHAO Bote, ZHANG Lei, ZHEN Dongxing, et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution[J]. Nature Communications, 2017, 8: 14586.
[5] YAN Tao, PAN Zhijuan. Structures and Properties of Polyacrylonitrile/Graphene Composite Nanofiber Yarns Prepared by Multi-Needle Electrospinning De-vice with an Auxiliary Electrode.[J]. Journal of Nano-science & Nanotechnology, 2018, 13(6): 4255-4263.
[6] GAO Jiefeng, SONG Xin, HUANG Xuewu, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science, 2018, 439: 394-404.
[7] TURAN Deniz, GIBIS Monika, GUNES Gurbuz, et al. The impact of the molecular weight of dextran on formation of whey protein isolate (WPI)-dextran con-jugates in fibers produced by needleless electrospin-ning after annealing[J]. Food & Function, 2018, 9(4): 2193-2200.
[8] XU Zhen, Gao Chao. In situPolymerization Approach to Graphene-Reinforced Nylon-6 Composites[J]. Mac-romolecules, 2010, 43(16): 6716-6723.
[9] 田龙, 李杰, 潘志娟. 多射流静电纺技术的研究现状[J].纺织学报, 2013, 34(9): 150-156.
TIAN Long, LI Jie, PAN Zhijuan. Research status of multi-jet electrospinning technology[J].Journal of Textile Research, 2013, 34(9): 150-156.
[10] 王航, 庄旭品, 董锋, 等. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018, 39(7): 165-173.
WANG Hang, ZHAUNG Xupin, DONG, Feng, et al. Preparation technology and application progress of so-lution blown nanofibers[J]. Journal of Textile Re-search, 2018, 39(7): 165-173.
[11] HE Jihuan. Nano bubble dynamics in spider spinning system[J]. Journal of Animal and Veterinary Advanc-es,2008, 7(2): 207-209.
[12] HE Jihuan, LIU Yong, XU Lan. Apparatus for prepar-ing electrospun nanofibres: a comparative review[J]. Materials Science and Technology, 2010, 26 (11): 1275 -1287.
[13] HE Jihuan, The smaller, the better: From the spider-spinning to bubble-electrospinning[J]. Acta Physica Polonica-Series A General Physics, 2012, 121(1): 254-256.
[14] LIU Yong, He Jihuan. Bubble electrospinning for mass production of nanofibers[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(3): 393-396.
[15] 刘雍. 气泡静电纺丝技术及其机理研究[D]. 上海: 东华大学, 2008.
LIU Yong. A new technology, bubble electrospinning, for production nanofibers[D].Shanghai: Donghua University, 2008.
[16] 刘雍, 何吉欢, 俞建勇, 等. 一种可用于大批量生产纳米纤维的喷气式静电纺丝装置 :中国, CN200710036447.4[P]. 2007-07-25.
LIU Yong,HE Jihuan,YU Jianyong,et al. A jet-propelled electrospinning set-up for mass production of
nanofibers: China,CN200710036447. 4[P]. 2007-07-25.
[17] 刘雍, 俞建勇, 何吉欢, 等. 一种纳米纤维的静电纺丝装置: 中国, CN200710040316.3[P], 2007-10-10.
LIU Yong, YU Jianyong, HE Jihuan, et al. An electro-spinning set-up for fabrication of nanofibers: China, CN200710040316. 3[P]. 2007-10-10.
[18] 何吉欢, 杨瑞瑞, 任忠夫. 一种可便携制备纳米纤维的喷气静电纺丝装置:中国, CN200910056750. X[P], 2010-01-27.
HE Jihuan, YANG Ruirui, REN Zhongfu. A portable jet-propelled electrospinning set-up for fabrication of nanofibers: China, CN200910056750.X[P], 2010.
[19] 何吉欢,孔海燕,周丽霞. 气泡纺丝装置:中国, CN20 1210407119.1[P], 2013-01-09.
HE Jihuan, KONG Haiyan, ZHOU Lixia. Bubble-electrospinning set-up: China, CN201210407119.1[P]. 2013-01-09.
[20] DOU Hao, HE Jihuan, LIU Hongyan. Wave-like beads on nanofibers by blown bubble spinning [J]. Thermal science, 2014, 18(5), pp. 1477-1479.
[21] DOU Hao, LIU Hongyan. Fabrication of micro yarn composed of nanofibers by blown bubble spinning [J]. Advanced Materials Research, 2014, 843, pp: 74-77.
[22] 窦皓. 气流气泡纺制备微/纳米纤维及其机理研究[D]. 苏州: 苏州大学, 2015.
DOU Hao. Fabrication of Micro/nanofibres by Blown Bubble Spinning and its Mechanism[D]. Suzhou: Soochow University, 2015.
[23] 陈柔羲. 新型气泡静电纺丝技术及自清洁纳米纤维膜的制备[D]. 苏州: 苏州大学, 2016.
CHEN Rouxi. Novel Bubble Electrospinning and the Fabracation of Selfcleaning Nanofibers Membrane[D]. Suzhou: Soochow University, 2016.
[24] 李雅. 新型气泡静电纺丝技术及自清洁纳米纤维膜的制备[D]. 苏州: 苏州大学, 2018.
LI Ya. Effect of nanofibers on Battery Separator and Innovation of Critical Bubble Elelectrospinning[D]. Suzhou: Soochow University, 2018.
[1] 付译鋆 安琪 张伟 张瑜 柯惠珍. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018, 39(12): 7-12.
[2] 程博闻 高鲁 SARMAD Bushra 邓南平 康卫民. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
[3] 陈明军 张有忱 杜琳 李好义 丁玉梅 杨卫民. 聚合物熔体法制备纳米纤维技术研究现状[J]. 纺织学报, 2018, 39(12): 166-174.
[4] 闫涛 潘志娟. 静电纺纳米纤维柔性应变传感器的研究现状[J]. 纺织学报, 2018, 39(12): 152-157.
[5] 方玮 徐岚. 漏斗式喷气静电纺聚乙烯吡咯烷酮纳米纤维膜的制备及其表征[J]. 纺织学报, 2018, 39(10): 7-11.
[6] 董锋 王航 滕士英 庄旭品 程博闻 . 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(09): 1-7.
[7] 吴小娟 余妙晶 舒慧 郑怡筱 葛烨倩 . 过温保护层合纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 21-26.
[8] 陈洪立 焦晓宁 柯鹏. 取向增强复合锂离子电池隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 8-14.
[9] 张博亚 李佳慧 张如全 李建强. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 15-20.
[10] 王航 庄旭品 董锋 石磊 康卫民 徐先林 程博闻. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018, 39(07): 165-173.
[11] 王迎 杨云 魏春艳 宋欢 季英超 孙玉雍 张欣. 沉积静电纺聚丙烯腈纳米纤维膜窗纱的制备及其性能[J]. 纺织学报, 2018, 39(04): 14-18.
[12] 靳世鑫 辛斌杰 郑元生. 静电纺丝法宏量制备纳米纤维的研究进展[J]. 纺织学报, 2018, 39(03): 175-180.
[13] 王永鹏 刘梦竹 路大勇. 用静电纺丝法制备可交联高性能聚合物纳米纤维[J]. 纺织学报, 2018, 39(01): 6-10.
[14] 李树锋 刘高华 谢小军 韩永兴 张艳 程博闻. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017, 38(12): 1-6.
[15] 李晴碧 刘琴 顾迎春 彭旭 李静静 蒋洁 陈胜. 复合静电纺超细聚丙烯腈纳米纤维的制备[J]. 纺织学报, 2017, 38(11): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘冠彬. 胸部造型数值化的研究与实践[J]. 纺织学报, 2004, 25(03): 59 -60 .
[2] 周允明;沈孝昂. 使用ZS-01染色助剂改进棉的染色性能[J]. 纺织学报, 1990, 11(03): 21 -25 .
[3] 胡觉亮. 基于贝叶斯方法的织物分类研究[J]. 纺织学报, 2004, 25(01): 48 -49 .
[4] 张进武. NC033钢丝起毛机电气部分的改造[J]. 纺织学报, 2003, 24(05): 97 -98 .
[5] 王小亚;孙青;李梅. 毛织物印花工艺探讨[J]. 纺织学报, 1988, 9(09): 38 -39 .
[6] 于永玲;徐铭九. 混并机混和效果评定方法的研究[J]. 纺织学报, 1987, 8(02): 9 -18 .
[7] 谢孔良. 纺织品印染后整理新技术近期研究进展[J]. 纺织学报, 2003, 24(06): 97 -98 .
[8] 沈淦清. 分散常压可染改性涤纶热定形及染色特性探讨[J]. 纺织学报, 1987, 8(12): 29 -34 .
[9] 秦益民. 海藻酸医用敷料吸湿机理分析[J]. 纺织学报, 2005, 26(1): 113 -115 .
[10] 任家智;郁崇文. E62型精梳机分离罗拉传动机构工艺性能研究[J]. 纺织学报, 2004, 25(06): 32 -33 .