纺织学报 ›› 2018, Vol. 39 ›› Issue (11): 73-78.doi: 10.13475/j.fzxb.20180103406
摘要:
为改善芳纶纤维与树脂基体之间的黏结性,采用氮气冷等离子体技术对芳纶纤维进行改性,借助扫描电子显微镜、原子力显微镜、X射线光电子能谱仪及接触角测量仪观察和分析纤维的表面形貌、化学组分、表面润湿性及表面能的变化。结果表明:样品处理后24 h内,纤维表面粗糙度提高,C 含量减少,N 和 O 含量增加,接触角由疏水转变为亲水,表面能增大;随着放置时间的延长,纤维表面粗糙度保持不变,非极性基团C—C 和C—H 含量增加,极性基团C—N、C—O 和NH—CO 含量减少,表面能降低,接触角增大,最后趋于稳定;放置28 d 后,接触角比未处理纤维降低了27.8°,表面能提升了87%,表明冷等离子体对表面的刻蚀和改性是永久的。
[1] | 程燕婷, 孟家光, 刘青. 碳纤维表面改性处理及其基本性能表征[J]. 纺织学报,2016,37(6):22-26. |
[2] | 王彧婕. 介质阻挡放电等离子体改性芳纶纤维的界面性质的研究[D].四川成都:四川大学,2007:32-39. |
[3] | 严志云, 石虹桥, 刘安华,等. 低温等离子体改性芳纶表面的XPS分析[J]. 纺织学报, 2007, 28(8):19-22. |
[4] | NAEBE M, DENNING R, HUSON M G, et al. Ageing effect of plasma‐treated wool[J]. Journal of The Textile Institute, 2011, 102(12): 1086-1093. |
[5] | 张春明,房宽峻. 等离子体处理时效性与涤纶织物润湿性能关系[J]. 棉纺织技术,2012,40(4):11-14. |
[6] | 倪新亮. 碳纤维增强树脂基复合材料表面功能涂层制备研究[D].安徽合肥:中国科学技术大学,2015:12-28. |
[7] | GUO F,ZHANG Z,LIU W,et al. Effect of plasma treatment of Kevlar fabric on the tribological behavior of Kevlar fabric/phenolic composites[J]. Tribology International, 2009, 42(2): 243-249. |
[8] | OKELL S,HENSHAW T,FARROW G J,et al. Effects of low‐power plasma treatment on polyethylene surfaces[J]. Surface and Interface Analysis, 1995, 23(5): 319-327. |
[9] | SU W,CHANG H,HONDA S,et al. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics[J]. Physica E-low-dimensional Systems & Nanostructures, 2017: 41-46. |
[10] | PAPPAS D D, BUJANDA A A, DEMAREE J D, et al. Surface modification of polyamide fibers and films using atmospheric plasmas[J]. Surface & Coatings Technology, 2006, 201(7): 4384-4388. |
[11] | HWANG Y J, QIU Y, ZHANG C, et al. Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers[J]. Journal of Adhesion Science and Technology, 2003, 17(6): 847-860. |
[12] | BODAS D, RAUCH J, KHANMALEK C, et al. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma[J]. European Polymer Journal, 2008, 44(7): 2130-2139. |
[13] | NAEBE M, LI Q, ONUR A, et al. Investigation of chitosan adsorption onto cotton fabric with atmospheric helium/oxygen plasma pre-treatment[J]. Cellulose, 2016, 23(3): 2129-2142. |
[14] | ZILLE A, OLIVEIRA F R, Souto A P, et al. Plasma Treatment in Textile Industry[J]. Plasma Processes and Polymers, 2015, 12(2): 98-131. |
[15] | NAEBE M, COOKSON P G, RIPPON J A, et al. Effects of Plasma Treatment of Wool on the Uptake of Sulfonated Dyes with Different Hydrophobic Properties[J]. Textile Research Journal, 2010, 80(4): 312-324. |
[16] | NAEBE M, COOKSON P G, DENNING R, et al . Use of low‐level plasma for enhancing the shrink resistance of wool fabric treated with a silicone polymer[J]. Journal of The Textile Institute, 2011, 102(11): 948-956. |
[1] | 吕赛龙 霍瑞亭 贾国强. 光催化自清洁纺织品的制备及其性能[J]. 纺织学报, 2018, 39(05): 87-91. |
[2] | 王瑞 孙艳丽 刘星 杨华 李博. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(02): 119-125. |
[3] | 姚鹏成 夏鑫. 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017, 38(01): 67-72. |
[4] | 张伟;周 琪;姚理荣. 静电纺间位芳纶纤维的制备及其性能[J]. 纺织学报, 2011, 32(2): 11-17. |
[5] | 沈丽;戴瑾瑾;陈全伦. 氟碳化合物等离子体处理对纯棉织物表面性质的影响[J]. 纺织学报, 2009, 30(12): 71-75. |
[6] | 朱旭朝;熊杰;许淑燕;宋叶萍;霍鹏飞. UHMWPE纤维处理条件对其性能的影响[J]. 纺织学报, 2009, 30(06): 10-14. |
[7] | 刘 亚;李 静;朱正孝. PP抗光氧老化纺粘非织物布的开发及其性能[J]. 纺织学报, 2009, 30(05): 48-51. |
[8] | 姜生. 等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J]. 纺织学报, 2007, 28(9): 57-60. |
[9] | 严志云;石虹桥;刘安华;贾德民. 低温等离子体改性芳纶表面的XPS分析[J]. 纺织学报, 2007, 28(8): 19-22. |
[10] | 谢洪德;王红卫;李宁;张卫东. 柞蚕丝织物等离子体处理接枝后性能变化研究[J]. 纺织学报, 2005, 26(5): 28-30. |
[11] | 王秋美;胡红. 高性能纤维纬平针织物的线圈形态及拉伸性能研究[J]. 纺织学报, 2004, 25(06): 65-66. |
[12] | 熊杰;施楣梧;周国泰;顾伯洪;王善元. 高应变率下芳纶纤维力学性能的研究[J]. 纺织学报, 2000, 21(06): 7-10. |
[13] | 何瑶. 低温氧等离子体处理羊毛的经时效应的研究[J]. 纺织学报, 1998, 19(04): 41-42. |
|