纺织学报 ›› 2018, Vol. 39 ›› Issue (11): 73-78.doi: 10.13475/j.fzxb.20180103406

• 染整与化学品 • 上一篇    下一篇

芳纶纤维的冷等离子体处理及其老化性能

    

  • 收稿日期:2018-01-15 修回日期:2018-08-11 出版日期:2018-11-15 发布日期:2018-11-19
  • 基金资助:

     

Cold plasma treatment and aging properties of aramid fiber

  • Received:2018-01-15 Revised:2018-08-11 Online:2018-11-15 Published:2018-11-19

摘要:

为改善芳纶纤维与树脂基体之间的黏结性,采用氮气冷等离子体技术对芳纶纤维进行改性,借助扫描电子显微镜、原子力显微镜、X射线光电子能谱仪及接触角测量仪观察和分析纤维的表面形貌、化学组分、表面润湿性及表面能的变化。结果表明:样品处理后24 h内,纤维表面粗糙度提高,C 含量减少,N 和 O 含量增加,接触角由疏水转变为亲水,表面能增大;随着放置时间的延长,纤维表面粗糙度保持不变,非极性基团C—C 和C—H 含量增加,极性基团C—N、C—O 和NH—CO 含量减少,表面能降低,接触角增大,最后趋于稳定;放置28 d 后,接触角比未处理纤维降低了27.8°,表面能提升了87%,表明冷等离子体对表面的刻蚀和改性是永久的。

关键词: 等离子体处理, 纤维改性, 芳纶纤维, 老化性能

Abstract:

In order to improve the bonding performance between aramid fiber and resin matrix, the aramid fiber was modified by cold plasma in nitrogen gas.  The surface morphology, chemical composition, surface wettability and surface energy aging properties of the aramid fibers treated by nitrogen cold plasma were studied with the increase of deposition time. The fibers were observed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and contact angle meter. The results show that the surface roughness of the fiber obviously increases after within 24 h treatment, the content of C on the fiber surface decreases and the contents of the N and O increase. The wettability changes from the hydrophobicity to hydrophilicity. The surface energy is improved. As time increases, the fiber surface remains rough. Non-polar group C—C and C—H increase, the polar group C—N, C—O and NH—C = O decrease, and the surface energy gradually reduces with the increase of contact angle, and finally tend to be stable. After 28 d, in comparison with the untreated fiber, the contact angle of the treated fibers reduces by 27.8°, and the surface energy increases by 87 %. This indicates that the cold plasma etching and modification of the surface are permanent.

Key words: cold plasma treatment, fiber modification, aramid fiber, aging property

[1] 程燕婷, 孟家光, 刘青. 碳纤维表面改性处理及其基本性能表征[J]. 纺织学报,2016,37(6):22-26.
[2] 王彧婕. 介质阻挡放电等离子体改性芳纶纤维的界面性质的研究[D].四川成都:四川大学,2007:32-39.
[3] 严志云, 石虹桥, 刘安华,等. 低温等离子体改性芳纶表面的XPS分析[J]. 纺织学报, 2007, 28(8):19-22.
[4] NAEBE M, DENNING R, HUSON M G, et al. Ageing effect of plasma‐treated wool[J]. Journal of The Textile Institute, 2011, 102(12): 1086-1093.
[5] 张春明,房宽峻. 等离子体处理时效性与涤纶织物润湿性能关系[J]. 棉纺织技术,2012,40(4):11-14.
[6] 倪新亮. 碳纤维增强树脂基复合材料表面功能涂层制备研究[D].安徽合肥:中国科学技术大学,2015:12-28.
[7] GUO F,ZHANG Z,LIU W,et al. Effect of plasma treatment of Kevlar fabric on the tribological behavior of Kevlar fabric/phenolic composites[J]. Tribology International, 2009, 42(2): 243-249.
[8] OKELL S,HENSHAW T,FARROW G J,et al. Effects of low‐power plasma treatment on polyethylene surfaces[J]. Surface and Interface Analysis, 1995, 23(5): 319-327.
[9] SU W,CHANG H,HONDA S,et al. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics[J]. Physica E-low-dimensional Systems & Nanostructures, 2017: 41-46.
[10] PAPPAS D D, BUJANDA A A, DEMAREE J D, et al. Surface modification of polyamide fibers and films using atmospheric plasmas[J]. Surface & Coatings Technology, 2006, 201(7): 4384-4388.
[11] HWANG Y J, QIU Y, ZHANG C, et al. Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers[J]. Journal of Adhesion Science and Technology, 2003, 17(6): 847-860.
[12] BODAS D, RAUCH J, KHANMALEK C, et al. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma[J]. European Polymer Journal, 2008, 44(7): 2130-2139.
[13] NAEBE M, LI Q, ONUR A, et al. Investigation of chitosan adsorption onto cotton fabric with atmospheric helium/oxygen plasma pre-treatment[J]. Cellulose, 2016, 23(3): 2129-2142.
[14] ZILLE A, OLIVEIRA F R, Souto A P, et al. Plasma Treatment in Textile Industry[J]. Plasma Processes and Polymers, 2015, 12(2): 98-131.
[15] NAEBE M, COOKSON P G, RIPPON J A, et al. Effects of Plasma Treatment of Wool on the Uptake of Sulfonated Dyes with Different Hydrophobic Properties[J]. Textile Research Journal, 2010, 80(4): 312-324.
[16] NAEBE M, COOKSON P G, DENNING R, et al . Use of low‐level plasma for enhancing the shrink resistance of wool fabric treated with a silicone polymer[J]. Journal of The Textile Institute, 2011, 102(11): 948-956.
[1] 吕赛龙 霍瑞亭 贾国强. 光催化自清洁纺织品的制备及其性能[J]. 纺织学报, 2018, 39(05): 87-91.
[2] 王瑞 孙艳丽 刘星 杨华 李博. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(02): 119-125.
[3] 姚鹏成 夏鑫. 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017, 38(01): 67-72.
[4] 张伟;周 琪;姚理荣. 静电纺间位芳纶纤维的制备及其性能[J]. 纺织学报, 2011, 32(2): 11-17.
[5] 沈丽;戴瑾瑾;陈全伦. 氟碳化合物等离子体处理对纯棉织物表面性质的影响[J]. 纺织学报, 2009, 30(12): 71-75.
[6] 朱旭朝;熊杰;许淑燕;宋叶萍;霍鹏飞. UHMWPE纤维处理条件对其性能的影响[J]. 纺织学报, 2009, 30(06): 10-14.
[7] 刘 亚;李 静;朱正孝. PP抗光氧老化纺粘非织物布的开发及其性能[J]. 纺织学报, 2009, 30(05): 48-51.
[8] 姜生. 等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J]. 纺织学报, 2007, 28(9): 57-60.
[9] 严志云;石虹桥;刘安华;贾德民. 低温等离子体改性芳纶表面的XPS分析[J]. 纺织学报, 2007, 28(8): 19-22.
[10] 谢洪德;王红卫;李宁;张卫东. 柞蚕丝织物等离子体处理接枝后性能变化研究[J]. 纺织学报, 2005, 26(5): 28-30.
[11] 王秋美;胡红. 高性能纤维纬平针织物的线圈形态及拉伸性能研究[J]. 纺织学报, 2004, 25(06): 65-66.
[12] 熊杰;施楣梧;周国泰;顾伯洪;王善元. 高应变率下芳纶纤维力学性能的研究[J]. 纺织学报, 2000, 21(06): 7-10.
[13] 何瑶. 低温氧等离子体处理羊毛的经时效应的研究[J]. 纺织学报, 1998, 19(04): 41-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜怀;缪元吉. 卷绕面上纱圈稳定性的讨论[J]. 纺织学报, 1984, 5(08): 21 -25 .
[2] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[3] 陈聚富. 液压传动织轴运输车[J]. 纺织学报, 1987, 8(12): 15 -16 .
[4] 邹专勇;俞建勇;薛文良;程隆棣. 解析法评价旋转气流对喷气涡流纱的加捻强度[J]. 纺织学报, 2008, 29(5): 19 -21 .
[5] 文水平. 羊毛新型拒水拒油低温交联工艺[J]. 纺织学报, 2006, 27(6): 84 -87 .
[6] 毛志勇. 应用二项分布控制梳棉机生条棉结杂质[J]. 纺织学报, 1982, 3(09): 52 -56 .
[7] 汤加乐;李庆民. 减少纺织品火灾事故的对策初探[J]. 纺织学报, 1986, 7(04): 62 -64 .
[8] 倪钧;程懋丰. 我国棉纺工艺技术的发展与方向[J]. 纺织学报, 1990, 11(04): 41 -44 .
[9] 夏正兴. 纺织教育情报会议在■举行[J]. 纺织学报, 1985, 6(07): 13 .
[10] 尹红;刘宁;陈志荣. 高速纺油剂用无规聚醚构性关系研究进展[J]. 纺织学报, 2004, 25(03): 119 -120 .