纺织学报 ›› 2018, Vol. 39 ›› Issue (11): 33-37.doi: 10.13475/j.fzxb.20171008705

• 纺织工程 • 上一篇    下一篇

显微投影法测定棉/苎麻混纺比的不确定度评定

    

  1.  
  • 收稿日期:2017-10-25 修回日期:2018-08-14 出版日期:2018-11-15 发布日期:2018-11-19
  • 基金资助:

     

Evaluation on uncertainty of cotton/ramie blending ratio by micro-projection

  • Received:2017-10-25 Revised:2018-08-14 Online:2018-11-15 Published:2018-11-19

摘要:

为评定依据 FZ/T 30003—2009《麻棉混纺产品定量分析方法显微投影法》测定棉/苎麻混纺比的准确性,分析了测试中不确定度的来源,分别对棉/ 苎麻纤维平均直径、根数、切取长度、密度4 个主要不确定度分量进行计算。同时,探讨了标准中约除的棉、麻纤维切取长度对混合纤维含量测试精度的影响,发现忽略长度差异会造成0.8%的检测误差。结果表明:参照 FZ/T 30003—2009 测定棉/ 苎麻混纺比时,由平均直径引入的不确定度最大,密度引入的最小;为提高检测效率,在标准允许的误差范围内,可忽略棉、麻纤维切取长度的差异。

关键词: 棉, 苎麻, 混纺比, 显微投影法, 测量不确定度

Abstract:

In order to evaluate accuracy in measuring the blending ratio of cotton/ramie according to FZ/T 30003--2009 《QuantativeAnalysis on Cotton/Ramie Blended Textiles by Micro--profection Method》, the source of the uncertainty was discussed.  Four main uncertainties including fiber length, diameter, fiber number and densities were calculated. Meanwhile, the influence of cutting length of cotton and ramie fibers on measurement accuracy of fibers content was discussed. It is found that the neglecting on difference of fibers length results in 0.8% detection error. The results show that the uncrtainty introduced by equivalent diameter is the largest while by equivalent diameter is the largest while by density is the smallest when measuring the blending ratio of cotton and ramie by FZ/T 30003--2009. In order to improve measurement efficiency, the difference in fibers cutting length could be neglected within the allowed error range.

Key words: cotton, ramie, blended ratio, micro-profection, measurement of uncertainty

[1] 郭荣幸,程珊. 采用纤维细度仪进行麻/棉混纺产品定量分析技术的探讨[J].中国纤检.2016.3:77-80
GUO Rongxing, CHENG Shan.The study on quantitative analysis of bast/cotton blended products[J]. China Fiber Inspection. 2016.3:77-80
[2] 刘笑莹,方斌,朱守艾,等. 棉/大麻纤维混纺低损耗工艺优化[J].纺织学报, 2017,38(1):35-39.
LIU Xiaoying,FANG Bin,ZHU Shouai,et al. Low-loss optimization of cotton/hemp blending process[J]. Journal of Textile Research. 2017,38(1):35-39.
[3] 应乐斌,戴连奎,吴俭俭,等 . 基于纤维纵向显微图像的棉/亚麻单纤维识别[J].纺织学报, 2012,33(4):12-17.
YING Lebin, DAI Liankui, WU Jianjian ,et al. Single fiber identification of cotton/ flax fabric based on longitudinal view of microscopic fiber images[J]. Journal of Textile Research. 2012,33(4):12-17.
[4] 朱俊平,路凯,柴新玉,等 羊绒与羊毛直径的水平集中轴线法测量[J]. 纺织学报,2017,38(09):14-18.
ZHU Junping,LU Kai,CHAI Xinyu ,et al. Level set of central axis method of cashmere and wool diameter[J]. Journal of Textile Research.2017,38(09):14-18.
[5] 倪永,刘志红,胡腾蛟.PET、PTT 与PBT材料的定性与定量鉴别方法[J].纺织学报,2012,33(10);28-32
NI Yong,LIU Zhihong,HU Tengjiao. Qualitative and quantitative analysis of PET,PTT and PBT materials[J]. Journal of Textile Research. 2012,33(10);28-32.
[6] 巫莹柱,张晓利,黄美林,等. 熔融显微投影法定量分析PTT和PBT混纺比的研究[J]. 棉纺织技术, 2016,10(44):34-37
Wu Yingzhu, Zhang Xiaoli, Huang Meilin,et al. Study on and analysis blending ratio of PTT and PBT was determined by melted micro projection method[J].Cotton Textile Technology. 2016,10(44):34-37
[7] 梁小焰,曹楚凤. 莱赛尔纤维和莫代尔纤维混纺产品的定量分析方法探究[J]. 中国纤检,2014,(08):79-81.
LIANG Xiaoyan, CAO Chufeng.Exploration on Quantitative Analysis of Lyocell and Modal Blended Fabrics[J]. China Fiber Inspection. 2014,(08):79-81
[8] 金旭东,杨云峰,胡国胜,等. PA6/PA66/PA11共聚物的等温结晶行为[J]. 高分子材料科学与工程,2009,25(12):111-114.
JIN Xu-dong , YANG Yun-feng , HU Guo-sheng, et al. The Isothermal Crystallization Behavior of PA6/ PA66/PA11 co-Polymer[J]. Polymer Materials Science and Engineering.2009,25(12):111-114.
[9] 孙中伟,杨建平,郁崇文. 竹原纤维的密度测试[J].纺织科技进展.2007.1:75-76.
SUN Zhongwei, YANG Jianping,YU Chongwen. Bamboo fiber density[J]. Progress in Textile Science & Technology.2007.1:75-76.
[10] 张晓利,巫莹柱, 黄美林,等. PET和PBT混纺比定量分析的研究[J]. 上海纺织科技,2016,44(8):46-48
Zhang Xiaoli, Wu Yingzhu, Huang Meilin,et al. Quantitative analysis of blending ratio of PET and PBT blends[J].Shanghai Textile Science & Technology. 2016,44(8):46-48
[11] 姚穆,周锦芳,黄淑珍,等. 纺织材料学[M].北京:中国纺织出版社,2009:56-64
YAO Mu, ZHOU Jinfang, HUANG Shufang, et al. The stduy of textile materials[M]. Beijing:China Textile & Apparel Press, 2009:64
[1] 贺玉东 薛元 杨瑞华 刘曰兴 张国清. 双通道环锭数码纺混色纱的结构及其性能[J]. 纺织学报, 2018, 39(11): 27-32.
[2] 陶金 张德锁 林红 陈宇岳. 介孔氧化硅/棉复合纤维对染料的吸附性能[J]. 纺织学报, 2018, 39(10): 93-98.
[3] 蔡金芳 陈维国 崔志华 江华. 双亚芴基醌式噻吩染料对棉织物的染色性能[J]. 纺织学报, 2018, 39(10): 81-85.
[4] 卓萍 倪照鹏 李向梅 李强 闫克勤. 辐射热流作用下皮棉燃烧特性[J]. 纺织学报, 2018, 39(09): 29-33.
[5] 王利君 毛鹏丽. 防电磁辐射聚吡咯/ 棉织物的制备及其性能[J]. 纺织学报, 2018, 39(09): 95-101.
[6] 刘素素 姜蕾 隋晓锋 毛志平 徐红 张琳萍 钟毅. 水性聚氨酯-丙烯酸酯包覆颜料色浆在涂料染色中的应用[J]. 纺织学报, 2018, 39(09): 71-76.
[7] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[8] 肖慧芳 阎克路 纪柏林. 糖类添加剂在1,2,3,4-丁烷四羧酸棉织物防皱整理中的应用[J]. 纺织学报, 2018, 39(07): 89-94.
[9] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[10] 张希文 武海良 沈艳琴 毛宁涛. 温湿度对涤/棉浆纱力学性能的影响[J]. 纺织学报, 2018, 39(06): 70-74.
[11] 黄益 李思琪 阮斐斐 李博 邵建中. 卟啉铁/双氧水体系在棉织物低温催化漂白中的应用[J]. 纺织学报, 2018, 39(06): 75-80.
[12] 陈丽丽 楼利琴 傅雅琴. 木棉纤维/棉混纺织物结构参数对其保暖透气性影响[J]. 纺织学报, 2018, 39(06): 47-51.
[13] 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86.
[14] 刘杰 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(03): 50-55.
[15] 白婧 杨柳 张毅 张瑞云 马颜雪 俞建勇 程隆棣. 纯棉色纺纱配色中的Stearns-Noechel模型参数优化[J]. 纺织学报, 2018, 39(03): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 花铁寅. RU11型转杯纺纱机适纺原棉的探讨[J]. 纺织学报, 1992, 13(07): 20 -23 .
[2] 迟景魁. 中国土工布在工程中的应用与发展[J]. 纺织学报, 1996, 17(05): 14 -15 .
[3] 姜亚明;谢霞.;邱冠雄;王鹏. 多向纤维缠绕预制件的纤维取向[J]. 纺织学报, 2006, 27(6): 36 -40 .
[4] 王凌;胡望明. 涤纶水刺非织造布的拒水整理与性能测试[J]. 纺织学报, 2007, 28(1): 84 -86 .
[5] 崔毅华;王新厚. 底网压榨毛毯纤维材料和加工工艺的研讨[J]. 纺织学报, 2004, 25(03): 103 -104 .
[6] 朱泽飞;林建忠. 纤维状粒子在气流场中的受力状况研究[J]. 纺织学报, 2000, 21(05): 8 -10 .
[7] 沈勇;孙铠. 纤维素酶对纤维素纤维吸附参数的研究[J]. 纺织学报, 2000, 21(05): 21 -24 .
[8] 徐铭九. 并条机高速化问题的研讨[J]. 纺织学报, 1986, 7(05): 52 -55 .
[9] 梁静;戴瑾瑾. 氧等离子体对丙纶涂料印花性能的研究[J]. 纺织学报, 2004, 25(04): 51 -53 .
[10] 孙胜敏. XGJ-Ⅱ型粗纱假捻器应用效果介绍[J]. 纺织学报, 1993, 14(10): 42 .