纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 73-78.doi: 10.13475/j.fzxb.20180106806

• 染整与化学品 • 上一篇    下一篇

碱处理对异形截面聚酯纱线芯吸效应及强力的影响

张琳1, 武海良1(), 沈艳琴1, 毛宁涛1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.英国利兹大学 设计学院, 英国 利兹 LS2 9JT
  • 收稿日期:2018-01-30 修回日期:2018-08-17 出版日期:2019-01-15 发布日期:2019-01-18
  • 通讯作者: 武海良
  • 作者简介:张琳(1994—),女,硕士生。主要研究方向为新型纺织浆料及浆纱工艺。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Influence of alkali treatment on wicking effect and strength of profiled polyester yarn

ZHANG Lin1, WU Hailiang1(), SHEN Yanqin1, MAO Ningtao1,2   

  1. 1. College of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. School of Design, University of Leeds, Leeds LS2 9JT, UK
  • Received:2018-01-30 Revised:2018-08-17 Online:2019-01-15 Published:2019-01-18
  • Contact: WU Hailiang

摘要:

针对氢氧化钠可破坏聚酯纤维结构,影响异形截面聚酯纤维的芯吸效应、润湿性、强力、伸长性能和吸湿快干及吸湿凉爽功能这个问题,借助扫描电子显微镜,对氢氧化钠处理前后的纤维形态结构进行了表征,分析了影响该纱线芯吸效应的因素,研究了不同质量分数碱处理对异形截面聚酯纱线芯吸效应、润湿性能、强力及伸长的影响规律。结果表明:异形截面聚酯纤维横截面为十字形,沿纤维纵向有4道沟槽,起到毛细管作用,为水分的迁移提供了通道,使纤维及纱线具有良好的芯吸效应;氢氧化钠可有效清除异形截面聚酯纤维沟槽中的低聚物,当氢氧化钠质量分数在4%左右时,纱线芯吸效果显著提高;氢氧化钠处理可提高异形截面聚酯纱线的润湿性;随着氢氧化钠质量分数的提高,异形截面聚酯纱线强力及伸长下降,当氢氧化钠质量分数高于6%后,纱线的强力和伸长损失显著。

关键词: 异形截面聚酯纤维, 碱处理, 芯吸性能, 纱线强力

Abstract:

Aiming at the problem that NaOH could damage the structure of polyester fiber and affect the wicking effect, wettability, strength and elongation properties of profiled polyester fiber, and fast drying and cool properties, scanning electro microscopy was adopted to characterize the structure of the fiber before and after NaOH treatment. The influencing factors of wicking effect was analyzed and the influences of alkali concentration on wicking effect, wettability, strength and elongation properties were studied. The results show that the cross section of profiled polyester fiber is cross shaped. Four trenches along the longitudinal direction of the fiber play the capillary role and provide a channel for the migration of moisture. Therefore, the profiled polyester fiber and yarn have good wicking effect. Sodium hydroxide can effectively remove the oligomers from profiled polyester fibers, and the wicking effect of profiled polyester yarns is improved significantly when the concentration of alkali is about 4%. It is found that profiled polyester yarns treated by NaOH solution have good wettability. With the increase of the alkali concentration, the strength and elongation of profiled polyester yarns decrease, and the strength and elongation properties of the profiled polyester yarns are lost significantly while the alkali agent concentration is higher than 6%.

Key words: profiled polyester fiber, alkali treatment, wicking effect, strength of yarn

中图分类号: 

  • TS102.6

图1

异形截面聚酯纤维与纱线的红外光谱图"

图2

异形截面聚酯纤维表面形态(×5 000) (a) Cross section structure; (b)Longitudinal structure"

图3

碱处理后异形截面聚酯纱线芯吸高度及芯吸速率"

图4

不同质量分数碱处理后异形截面聚酯纤维的表面结构(×10 000) (a) Profiled polyester fiber; (b) Treated with 2% alkali; (c) Treated with 4% alkali; (d) Treated with 6% alkali; (e) Treated with 8% alkali"

图5

不同质量分数碱处理后纱线与水滴接触时的初始形态 (a) Profiled polyester yarn; (b) Treated with 2% alkali; (c) Treated with 4% alkali;(d) Treated with 6% alkali; (e) Treated with 8% alkali"

图6

碱处理前后纱线与水滴的接触角"

图7

聚酯纤维与NaOH溶液的化学反应"

图8

碱处理对纱线强力及伸长率的影响"

[1] 刘月玲. 异形改性涤纶面料与纯棉面料性能对比[J]. 棉纺织技术, 2011,39(8):26-28.
LIU Yueling. Property contrast between profiled modified polyester fabric and pure cotton fabric[J]. Cotton Textile Technology, 2011,39(8):26-28.
[2] 葛俊伟, 张北波. Coolplus吸湿排汗超薄针织物的开发[J]. 西安工程大学学报, 2010,24(2):150-153.
GE Junwei, ZHANG Beibo. Development of coolplus ultra-thin knitted fabric[J]. Journal of Xi'an Polytechnic University, 2010,24(2):150-153.
[3] XU G P, LUO X H, QIU H B, et al. Study the wet-absorb and fast-dry properties of the coolplus fiber/cotton compound fabrics[J]. Applied Mechanics & Materials, 2013(423-426):318-321.
[4] 杜金梅, 罗雄方, 唐烨, 等. 碱减量处理对涤纶织物疏水整理效果的影响[J]. 纺织学报, 2015,36(7):71-76.
DU Jinmei, LUO Xiongfang, TANG Ye, et al. Influence of alkali deweighting on hydrophobicity of polyester fabric[J]. Journal of Textile Research, 2015,36(7):71-76.
doi: 10.1177/004051756603600109
[5] 徐林, 任煜, 张红阳, 等. 碱减量-氟硅烷处理涤纶织物的拒水拒油性[J]. 印染, 2017,43(18):1-4.
XU Lin, REN Yu, ZHANG Hongyang, et al. Water-and oil-repellency of polyester fabrics after alkali deweighting-fluoroalkyl silanes treatment[J]. China Dyeing & Finishing, 2017,43(18):1-4.
[6] NOURBAKHSH S, MONTAZER M, KHANDAGHABADI Z. Zinc oxide nano particles coating on polyester fabric functionalized through alkali treatment[J]. Journal of Industrial Textiles, 2016,47(6):1-18.
[7] 孟春丽, 许译元, 曹毅, 等. 涤纶织物的退浆、碱减量和染色一浴加工[J]. 印染, 2017,43(11):20-24.
MENG Chunli, XU Yiyuan, CAO Yi, et al. Desizing,alkali deweighting and dyeing of polyester fabric in one bath[J]. China Dyeing & Finishing, 2017,43(11):20-24.
[8] 曹机良, 孟春丽, 曹毅, 等. 咪唑类离子液体对涤纶的碱减量加工[J]. 丝绸, 2017,54(12):21-25.
CAO Jiliang, MENG Chunli, CAO Yi, et al. Alkali deweighing processing of polyester fiber with imidazole ionic liquid[J]. Journal of Silk, 2017,54(12):21-25.
[9] CHIKOUCHE M D L, MERROUCHE A, AZIZI A, et al. Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites[J]. Journal of Reinforced Plastics & Composites, 2015,34(16):1329-1339.
[10] 刘越, 朱平, 李旦. SIP改性异形聚酯纤维的碱水解性能[J]. 纺织学报, 2009,30(4):28-32.
LIU Yue, ZHU Ping, LI Dan. Alkaline hydrolysis properties of modified profiled hollow polyester fiber[J]. Journal of Textile Research, 2009,30(4):28-32.
[11] 王维明, 虞波. 中空聚酯短纤维耐碱性及其力学性能分析[J]. 纺织学报, 2012,33(12):1-4.
WANG Weiming, YU Bo. Analysis of alkali resistance and mechanical properties of polyester hollow staple fibers[J]. Journal of Textile Research, 2012,33(12):1-4.
doi: 10.1177/004051756303300101
[12] 梁必超, 韩春艳, 季轩, 等. 聚酯/聚酰胺共聚纤维的结构及其理化性能[J]. 纺织学报, 2016,37(11):1-7.
LIANG Bichao, HAN Chunyan, JI Xuan, et al. Structure and physicochemical properties of polyester / polyamide copolymer fiber[J]. Journal of Textile Research, 2016,37(11):1-7.
doi: 10.1177/004051756703700101
[13] 李长龙, 常桑, 周磊. 碱处理对木棉纤维结构及性能的影响[J]. 纺织学报, 2015,36(4):20-24.
LI Changlong, CHANG Sang, ZHOU Lei. Influence of alkali treatment on structure and properties of kapok fiber[J]. Journal of Textile Research, 2015,36(4):20-24.
[14] 王海莹, 陈诺, 丁颖, 等. 利用碱处理纳米纤维素制备三维网状水凝胶的研究[J]. 纤维素科学与技术, 2018,26(2):24-30.
WANG Haiying, CHEN Nuo, DING Ying, et al. Study on three-dimensional network cellulose nanofiber hydrogel by using alkali treatment[J]. Journal of Cellulose Science and Technology, 2018,26(2):24-30.
[15] 李翠芳, 刘红茹, 张玉芳, 等. 三叶形涤纶织物的吸湿性能[J]. 纺织学报, 2014,35(3):22-26.
LI Cuifang, LIU Hongru, ZHANG Yufang, et al. Study on moisture absorption performance of trilobal polyester fabric[J]. Journal of Textile Research, 2014,35(3):22-26.
[16] 朱黎黎, 张佐光, 李敏, 等. 工艺温度下树脂与纤维的接触角及其粘附作用研究[J]. 复合材料学报, 2010,27(5):41-46.
ZHU Lili, ZHANG Zuoguang, LI Min, et al. Contact angle and action of adhesion between epoxy resin and fibers at processing temperatures[J]. Acta Materiae Compositae Sinica, 2010,27(5):41-46.
[1] 宋星 祝成炎 蔡冯杰 吕智宁 田伟. 碱处理对涤纶/ 光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102.
[2] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[3] 张才前 姚菊明. 织物导湿排汗性能自动测试方法[J]. 纺织学报, 2018, 39(01): 45-50.
[4] 李静 王晓 邵伟 崔永珠 魏春艳. 改性活性染料对涤纶织物的紫外光引发接枝染色[J]. 纺织学报, 2017, 38(11): 91-96.
[5] 魏晓婷 薛元 郭明瑞 张继东 高卫东. 三通道数码细纱机纺制竹节纱的原理及其性能[J]. 纺织学报, 2017, 38(07): 39-43.
[6] 纪峰 李娜 宋冉风云 张瑞云 刘若华 邱夷平. 纺织材料芯吸性能建模预测研究进展[J]. 纺织学报, 2016, 37(09): 162-168.
[7] 谷有众 高卫东 卢雨正 刘建立 杨瑞华. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016, 37(07): 142-148.
[8] 刘婵 谢春萍 刘新金 曲华洋 徐伯俊. 黑牦牛绒氧化脱色工艺优化及其可纺性[J]. 纺织学报, 2016, 37(07): 49-54.
[9] 苟捷 刘建立 高卫东. 应用主成分分析的原棉可纺性指数构建[J]. 纺织学报, 2015, 36(08): 16-21.
[10] 董艳 刘呈坤 孙润军 陈美玉 杨旋. 静电纺纳米纤维束的吸水保水及芯吸性能[J]. 纺织学报, 2015, 36(08): 11-15.
[11] 李长龙 常桑 周磊. 碱处理对木棉纤维结构及性能的影响[J]. 纺织学报, 2015, 36(04): 20-24.
[12] 宣小会 朱思敏 潘志娟. 静电纺丝制备CA纳米纤维及其碱处理[J]. 纺织学报, 2013, 34(9): 6-0.
[13] 阮芳涛, 金欣, 韦毅俊, 王闻宇, 郭成越, 肖长发, 谢淳. 碱处理∕吡咯沉积制备聚酯导电纤维[J]. 纺织学报, 2012, 33(2): 1-5.
[14] 王维明 虞波. 中空聚酯短纤维耐碱性及其力学性能分析[J]. 纺织学报, 2012, 33(12): 1-4.
[15] 刘杰;王府梅. 碱处理对含木棉纤维纱线形态结构和性能的影响[J]. 纺织学报, 2009, 30(12): 55-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!