纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 19-25.doi: 10.13475/j.fzxb.20180201607

• 纤维材料 • 上一篇    下一篇

湿/热处理对狗绒纤维结构和性能的影响

刘冰倩1, 盛丹2, 龚小宝1, 曹根阳1, 张韬3()   

  1. 1.武汉纺织大学 纺织新材料与先进加工技术国家重点实验室培育基地, 湖北 武汉 430200
    2.江南大学 纺织服装学院, 江苏 无锡 214122
    3.武汉纺织大学 服装学院, 湖北 武汉 430073
  • 收稿日期:2018-02-05 修回日期:2018-09-30 出版日期:2019-01-15 发布日期:2019-01-18
  • 通讯作者: 张韬
  • 作者简介:刘冰倩(1994—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家自然科学基金项目(51325306)

Influence of wet/heat treatment on structure and properties of dog hair

LIU Bingqian1, SHENG Dan2, GONG Xiaobao1, CAO Genyang1, ZHANG Tao3()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. School of Fashion, Wuhan Textile University, Wuhan, Hubei 430073, China
  • Received:2018-02-05 Revised:2018-09-30 Online:2019-01-15 Published:2019-01-18
  • Contact: ZHANG Tao

摘要:

为更好地开发利用狗绒资源,探究了湿/热处理对狗绒纤维结构和性能的影响,分别对狗绒纤维进行湿处理和热处理,采用单纤维万能测试仪、红外光谱仪、X射线衍射仪、热分析仪、保暖测试仪和扫描电子显微镜等对狗绒纤维进行测试。结果表明:狗绒纤维经湿处理后卷曲率下降,经热处理后卷曲率呈上升趋势;热处理对狗绒纤维表面损伤程度明显高于湿处理,且热处理后狗绒纤维力学性能明显变差;狗绒纤维具有蛋白质纤维红外特征,湿处理和热处理对其分子结构无明显影响,但对其二级结构造成影响,结晶指数由未处理时56.87%,分别降低为46.21%和45.92%,并且热稳定性均有下降;狗绒纤维经湿处理后中空率下降,保暖率也随之下降,经热处理后纤维中空率增加,保暖率提高至96.88%。

关键词: 狗绒纤维, 湿/热处理, 卷曲率, 保暖率

Abstract:

In order to better develop and utilize the resources of dog hair, the influences of wet / heat treatment on the structure and properties of dog hair were studied. The dog hair were subjected to heat and wet treatment, respectively, then the fibers were tested by single fiber universal tester, Fourier transform infrared spectroscopy, X-ray diffraction, thermal analyzer, thermal insulation tester and scanning electron microscopy. The results show that the crimp ratio of dog hair decreases after wet treatment, while that of the fiber increases after heat treatment. Heat treatment has much heavier harm to the surface of that fiber than wet treatment, and the mechanical properties of the dog hair are significantly worse after heat treatment. The dog hair has the infrared characteristics of protein fiber, and both of the wet treatment and heat treatment have no obvious influence on its molecular structure, but the secondary structure is affected. The crystallization indexes of samples after wet treatment and heat treatment decrease from 56.87% of untreated sample to 46.21% and 45.92%, respectively, and the heat stability decreases. In addition, the hollow ratio of the wet treated dog hair is decreased obviously and the warm retention ratio is reduced accordingly. However, the hollow ratio of the fibers after heat treatment increases, and the warm retention ratio increases to 96.88%.

Key words: dog hair, wet/heat treatment, crimp ratio, warm retention ratio

中图分类号: 

  • TS102.3

图1

热处理对狗绒纤维卷曲性能的影响"

图2

湿/热处理前后狗绒纤维应力与应变曲线"

表1

湿/热处理前后狗绒纤维力学性能测试结果"

处理方式 初始模量 断裂强度 断裂功
平均值/(cN·tex-1) CV值/% 平均值/(cN·tex-1) CV值/% 平均值/(cN·cm) CV值/%
未处理 203.79 18.91 18.55 2.16 6.08 25.44
湿处理 165.45 15.80 17.90 8.43 6.91 26.56
热处理 107.67 27.56 16.92 5.89 5.44 23.05

图3

湿/热处理前后狗绒纤维红外光谱图"

图4

湿/热处理前后狗绒纤维XRD图谱"

表2

湿/热处理前后狗绒纤维X射线衍射指标"

处理方式 I9/(°) I14/(°) C/%
未处理 422 182 56.87
湿处理 422 227 46.21
热处理 392 212 45.92

图5

湿/热处理前后狗绒纤维的TG曲线"

表3

湿/热处理前后狗绒纤维层保暖率和导热系数测试结果"

处理方式 保暖率/% 导热系数/(W·m-1·℃-1)
未处理 83.75 0.047 6
湿处理 55.79 0.099 7
热处理 96.88 0.037 9

图6

湿/热处理前后狗绒纤维截面SEM照片(×5 000) (a) Untreated; (b) Wet treatment; (c) Heat treatment"

[1] 王维, 李伟, 赵伟, 等. 拉细羊毛纤维的特征和产品加工性能[J]. 毛纺科技, 2003,31(5):17-21.
WANG Wei, LI Wei, ZHAO Wei, et al. Characteristics and product processing performance of finer wool fiber[J]. Wool Textile Journal, 2003,31(5):17-21.
[2] 白锦. 拉细羊毛与天然超细支羊毛织物的产品特性分析与比较[J]. 毛纺科技, 2006,34(11):49-51.
BAI Jin. Product characteristics analysis and comparison of fine wool and natural superfine branded wool fabric[J]. Wool Textile Journal, 2006,34(11):49-51.
[3] 孙梅, 沈淦清, 王柏华, 等. 山羊绒形态结构的统计[J]. 纺织学报, 2003,24(1):48-50.
SUN Mei, SHEN Ganqing, WANG Baihua, et al. Statistics of cashmere structure[J]. Journal of Textile Research, 2003,24(1):48-50.
[4] 陈前维, 张一心, 张引, 等. 拉细羊毛的结构形态与性能[J]. 毛纺科技, 2009,37(5):45-49.
CHEN Qianwei, ZHANG Yixin, ZHANG Yin, et al. Structure and properties of fine wool[J]. Wool Textile Journal, 2009,37(5):45-49.
[5] 李亚蓉. 新兴养殖项目:肉狗养殖[J]. 科学种养, 2012(9):52-52.
LI Yarong. The new breeding project:meat dog aquaculture[J]. Scientific Breeding, 2012(9):52-52.
[6] 滑钧凯, 单琪. 宝丝绒的开发与应用研究[J]. 纺织学报, 2003,24(1):50-52.
HUA Junkai, SHAN Qi. Research on the development and application of treasure velvet[J]. Journal of Textile Research, 2003,24(1):50-52.
[7] 林绍建, 兰建武, 吴思碟, 等. 高温及高温水处理对狗毛性能的影响[J]. 毛纺科技, 2011,39(2):46-48.
LIN Shaojian, LAN Jianwu, WU Sidie, et al. Effect of high temperature and high temperature water treat on properties of dog hair[J]. Wool Textile Journal, 2011,39(2):46-48.
[8] 韦玉辉, 宁琳, 吴锦川, 等. 转筒运动方式对羊毛织物起毛起球性能的影响[J]. 毛纺科技, 2017,45(7):26-30.
WEI Yuhui, NING Lin, WU Jinchuan, et al. Effect of rotating-drying model on the pilling of wool fabric drying[J]. Wool Textile Journal, 2017,45(7):26-30.
[9] SEGAL L, GREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of native cystallinity of native cellulose usingthe X-Ray diffractometer[J]. Textile Research Journal, 1959,29(10):786-794.
doi: 10.1177/004051755902901003
[10] 余志金, 龙家杰, 毕潇平, 等. 超临界CO2流体温度对羊毛纤维结构的影响[J]. 毛纺科技, 2012,40(2):7-11.
YU Zhijin, LONG Jiajie, BI Xiaoping, et al. Effect of temperature on the structure of wool fiber in supercritical CO2[J]. Wool Textile Journal, 2012,40(2):7-11.
[11] 刘慧娟, 王琳, 申鼎. 蚕蛹蛋白纤维性能研究[J]. 印染助剂, 2012,29(9):12-14.
LIU Huijuan, WANG Lin, SHEN Ding. Study on the properties of pupa protein fiber[J]. Textile Auxiliaries, 2012,29(9):12-14.
[12] 贾丽霞, 金崇业, 刘瑞, 等. 硅磷杂化阻燃整理对羊毛结构与热稳定性能的影响[J]. 纺织学报, 2017,38(12):101-105.
JIA Lixia, JIN Chongye, LIU Rui, et al. Influence of flame retardant finishing with silicon-phosphorus hybridization on structure and thermal stability of wool[J]. Journal of Textile Research, 2017,38(12):101-105.
doi: 10.1177/004051756803800111
[13] 陈宗良, 李闻欣, 周伟. 超声波技术在羊毛水解中的应用[J]. 毛纺科技, 2008,36(10):1-5.
CHEN Zongliang, LI Wenxin, ZHOU Wei. The application of ultrasonic technology in the hydrolysis of wool[J]. Wool Textile Journal, 2008,36(10):1-5.
[14] 王小丽, 刘洪玲, 于伟东. 狗毛和兔毛二级结构及其表面性能研究[J]. 上海纺织科技, 2015,43(11):54-58.
WANG Xiaoli, LIU Hongling, YU Weidong. The secondary structure and surface properties of dog hairs and rabbit hairs[J]. Shanghai Textile Science & Technology, 2015,43(11):54-58.
[15] 陈改君, 朱若英, 谢丰, 等. 湿蒸对羊毛微观结构的影响[J]. 毛纺科技, 2016,44(4):30-34.
CHEN Gaijun, ZHU Ruoying, XIE Feng, et al. Wet steaming effect on microstructure of wool[J]. Wool Textile Journal, 2016,44(4):30-34.
[16] 张恒, 李戎, 王魁, 等. 还原法与离子液体溶解法制备羊毛角蛋白膜[J]. 纺织学报, 2015,36(6):55-59.
ZHANG Heng, LI Rong, WANG Kui, et al. Preparation of wool keratin membranes prepared by ionic liquid method and reduction C method[J]. Journal of Textile Research, 2015,36(6):55-59.
doi: 10.1177/004051756603600107
[17] 杨陈. 紫外线辐照对羊毛纤维性能的影响[J]. 毛纺科技, 2015,43(12):1-5.
YANG Chen. Influence of performance of wool fiber treated by ultraviolet radiation[J]. Wool Textile Journal, 2015,43(12):1-5.
[1] 魏赛男;刘超颖;李瑞洲;吴焕岭;张长伟. 含湿状态下组织结构对织物热舒适性的影响[J]. 纺织学报, 2008, 29(8): 42-44.
[2] 胡心怡;王厉冰. 大豆蛋白纤维织物传热性能研究[J]. 纺织学报, 2003, 24(05): 56-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!