纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 147-152.doi: 10.13475/j.fzxb.20181101306

• 服装工程 • 上一篇    下一篇

热辐射暴露下消防员的生理反应及皮肤烧伤预测

苏云1,2,3, 杨杰4, 李睿4, 宋国文4, 李俊1,2,3(), 张向辉1,2,3   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 功能防护服装研究中心, 上海 200051
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    4.爱荷华州立大学, 美国 爱荷华 50011
  • 收稿日期:2018-11-05 修回日期:2018-11-16 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 李俊
  • 作者简介:苏云(1990—),男,讲师,博士。主要研究方向为功能防护服及纺织材料热湿传递模型。
  • 基金资助:
    中央高校基本科研业务费专项基金资助项目(2232018G-08);国家自然科学基金资助项目(51576038);上海市自然科学基金项目(17ZR1400500);东华大学青年教师科研启动基金资助项目(107-07-005328)

Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation

SU Yun1,2,3, YANG Jie4, LI Rui4, SONG Guowen4, LI Jun1,2,3(), ZHANG Xianghui1,2,3   

  1. 1. Fashion & Art Design, Donghua University, Shanghai 200051, China
    2. Protective Clothing Research Center, Donghua University, Shanghai 200051, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    4. Iowa State University, Iowa 50011, USA
  • Received:2018-11-05 Revised:2018-11-16 Online:2019-02-15 Published:2019-02-01
  • Contact: LI Jun

摘要:

为优化消防服热防护性能的评价准则,基于消防服热传递规律与人体热生理调节机制,建立了消防员生理反应与皮肤烧伤预测模型,利用服装热防护性能测试平台对比分析了平均皮肤温度、核心温度的变化趋势与预测误差。结果表明:基于模型预测的平均皮肤温度与核心温度均略大于实验测量结果,但总体变化趋势与实验结果具有较高的一致性;在热暴露条件下消防员面临着皮肤烧伤与热应激的双重威胁,皮肤烧伤更多发生在热暴露阶段,热应激更可能产生在热暴露结束之后,这是由于热传递的滞后效应导致;消防服热防护性能的评价需要综合考虑皮肤烧伤与人体热应激作为评价指标,从而更加准确地标定及优化消防服的热防护性能。

关键词: 生理反应, 皮肤烧伤, 热防护性能, 消防服, 热辐射

Abstract:

In order to improve the evaluation criteria on thermal protective performance of firefighting protective clothing, the prediction model on physiological reaction and skin burn of firefighter exposing to thermal radiation was developed based on mechanisms of heat transfer in clothing and human thermal physiological regulation. The changing trend and prediction deviation of mean skin temperature and core temperature were analyzed by the thermal protective performance tester of clothing. The results demonstrat that the mean skin temperature and core temperature predicted by the model are slightly larger than the values measured by the experiment, but the overall trend presents higher consistence with the experimental results. Additionally, firefighters in the heat exposure subject to threats of both skin burn and heat stress. The skin burn is caused during the exposure while it is more likely to produce heat stress after the end of exposure, which is attributed to lag effect of heat transfer. Therefore, the skin burn and the heat stress should be both used to more precisely characterize and improve the thermal protective performance of firefighting protective clothing.

Key words: physiological reaction, skin burn, thermal protective performance, firefighting protective clothing, thermal radiation

中图分类号: 

  • X924.3

图1

热传递模型的计算流程"

表1

不同层织物的基本性能参数"

类型 成分 密度/
(kg·m-3)
厚度/
mm
比热/
(J·kg-1·
K-1)
导热
系数/
(W·m-1·
K-1)
外层 100%Nomex 342 0.6 1 570 0.047
防水透
汽层
80%Nomex/20%
Kevlar (PTFE镀膜)
122 0.9 1 160 0.034
隔热层 100%Nomex 123 2.2 1 350 0.035

图2

热防护性能测评装置"

图3

平均皮肤温度实验测量值与模型预测值的对比"

图4

核心温度实验测量值与模型预测值的对比"

图5

皮肤烧伤时间实验测量值与模型预测值的对比"

[1] BARR D, GREGSON W, REILLY T. The thermal ergonomics of firefighting reviewed[J]. Applied Ergonomics, 2010,41(1):161-172.
doi: 10.1016/j.apergo.2009.07.001 pmid: 19664755
[2] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004,10(3):239-245.
doi: 10.1080/10803548.2004.11076611 pmid: 15377408
[3] SU Yun, LI Jun. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation[J]. Measurement Science and Technology, 2016,27(12):125904.
[4] FTAITI F, DUFLOT J C, NICOL C, et al. Tympanic temperature and heart rate changes in firefighters during treadmill runs performed with different fireproof jackets[J]. Ergonomics, 2001,44:502-512.
doi: 10.1080/00140130118503 pmid: 11345493
[5] FONTANA P, SAIANI F, GRÜTTER M, et al. Thermo-physiological impact of different firefighting protective clothing ensembles in a hot environment[J]. Textile Research Journal, 2018,88(7):744-753.
[6] LEE Y M, BARKER R L. Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures[J]. Textile Research Journal, 1987,57(3):123-132.
[7] SONG G. Cothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
[8] TORVI D A, HADJISOPHOCLEUS G V. Research in protective clothing for firefighters: state of the art and future directions[J]. Fire Technology, 1999,35(2):111-130.
[9] STOLWIJK J. A mathematical model of physiological temperature regulation in man[J]. NASA Contractor Report, 1971,DOI: ASA CR-1855.
[10] GAGGE A P. An effective temperature scale based on a simple model of human physiological regulatory res-ponse[J]. Ashrae Trans, 1971,77(1):21-36.
[11] TANABE S, KOBAYASHI K, NAKANO J. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J]. Energy & Buildings, 2002,34(6):637-646.
[12] FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental condi-tions[J]. International Journal of Biometeorology, 2001,45(3):143-159.
doi: 10.1007/s004840100099 pmid: 11594634
[13] HUIZENGA C, HUI Z, ARENS E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building & Environment, 2001,36(6):691-699.
[14] TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999,35(3):210-231.
[15] CENGEL Y A, GHAJAR A J. Heat and Mass Transfer: Fundamentals & Applications[M]. New York: McGraw-Hill, 2011: 578-655.
[16] SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009,79(7):632-644.
[17] LAWSON L K, CROWN E M, ACKERMAN M Y, et al. Moisture effects in heat transfer through clothing systems for wildland firefighters[J]. International Journal of Occupational Safety & Ergonomics, 2004,10(3):227-238.
pmid: 15377407
[18] PRASAD K, TWILLEY W H, LAWSON J R. Thermal Performance of fire fighters' protective clothing: numerical study of transient heat and water vapor transfer [C]// US Department of Commerce. NISTIR 6881. Gaithersburg: National Institute of Standards and Technology, 2002: 1-29.
[19] AHMED GHAZY, BERGSTROM D. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer, 2010,58(9):702-724.
[20] WISSLER E H. Whole-body human thermal modeling, an alternative to immersion in cold water and other unpleasant endeavors[J]. Journal of Heat Transfer, 2012.DOI: 10.1115/IHIC14-23340.
doi: 10.1115/1.3451030 pmid: 29042711
[21] PARSONS K. Human Thermal Environments: the Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance[M]. New York: CRC Press Inc, 2014: 59-77.
[22] MCLELLAN T M. The importance of aerobic fitness in determining tolerance to uncompensable heat stress[J]. Comparative Biochemistry and Physiology: Part A, Molecular & Integrative Physiology, 2001,128(4):691-700.
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[3] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[4] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[5] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[6] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[7] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[8] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[9] 陈萌 朱方龙 . 热辐射下织物内水分干燥实验及其动力学研究[J]. 纺织学报, 2018, 39(08): 52-57.
[10] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[11] 王丽君 卢业虎 王帅 马妮妮. 形状记忆合金尺寸对消防服面料防护性能的影响[J]. 纺织学报, 2018, 39(06): 113-118.
[12] 牛丽 钱晓明 范金土 张文欢 师云龙. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(06): 106-112.
[13] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[14] 邓梦 王云仪. 低辐射热暴露下消防服热防护性能测评方法研究进展[J]. 纺织学报, 2017, 38(12): 162-168.
[15] 王帅 卢业虎 王丽君 尤禅懿. 低辐射环境下形状记忆合金对防火面料隔热性能的影响[J]. 纺织学报, 2017, 38(08): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!